Irreducible decomposition for tensor product representations of Jordanian quantum algebras

被引:12
作者
Aizawa, N
机构
[1] Department of Applied Mathematics, Osaka Women's University, Sakai
来源
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL | 1997年 / 30卷 / 17期
关键词
D O I
10.1088/0305-4470/30/17/009
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Tensor products of irreducible representations of the Jordanian quantum algebras U-h(sl(2)) and U-h(su(1, 1)) are considered. For both the highest weight finite-dimensional representations of U-h (sl(2)) and the lowest weight infinite-dimensional ones of U-h (su(1, 1)), it is shown that tensor product representations are reducible and that the decomposition rules to irreducible representations are exactly the same as those of corresponding Lie algebras.
引用
收藏
页码:5981 / 5992
页数:12
相关论文
共 16 条
[1]  
ABDESSELAM B, 1997, IN PRESS MOD PHYS LE
[2]  
ABDESSELAM B, 1997, IN PRESS INT J MOD P
[3]   JORDANIAN DEFORMATION OF SL(2) AS A CONTRACTION OF ITS DRINFELD-JIMBO DEFORMATION [J].
AGHAMOHAMMADI, A ;
KHORRAMI, M ;
SHARIATI, A .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1995, 28 (08) :L225-L231
[4]  
[Anonymous], 1961, QUANTUM MECH
[5]   Universal R-matrix for non-standard quantum sl(2,R) [J].
Ballesteros, A ;
Herranz, FJ .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1996, 29 (13) :L311-L316
[6]  
BALLESTEROS A, 1996, QALG9611031
[7]  
Demidov E. E., 1990, PROG THEOR PHYS SUPP, V102, P203, DOI 10.1143/PTPS.102.203
[8]  
DOBREV VK, 1996, IC9614
[9]   QUANTUM MATRICES IN 2 DIMENSIONS [J].
EWEN, H ;
OGIEVETSKY, O ;
WESS, J .
LETTERS IN MATHEMATICAL PHYSICS, 1991, 22 (04) :297-305
[10]   COMPLEX ANGULAR MOMENTA AND GROUPS SU(1,1) AND SU(2) [J].
HOLMAN, WJ ;
BIEDENHA.LC .
ANNALS OF PHYSICS, 1966, 39 (01) :1-&