The CD8α-PILRa interaction maintains CD8+ T cell quiescence

被引:15
|
作者
Zheng, Linghua [1 ]
Han, Xue [1 ]
Yao, Sheng [1 ]
Zhu, Yuwen [1 ]
Klement, John [2 ]
Wu, Shirley [2 ]
Ji, Lan [1 ]
Zhu, Gefeng [1 ]
Cheng, Xiaoxiao [1 ]
Tobiasova, Zuzana [1 ]
Yu, Weiwei [1 ]
Huang, Baozhu [1 ]
Vesely, Matthew D. [1 ]
Wang, Jun [1 ]
Zhang, Jianping [1 ]
Quinlan, Edward [1 ]
Chen, Lieping [1 ]
机构
[1] Yale Univ, Dept Immunobiol, Sch Med, New Haven, CT 06520 USA
[2] Yale Univ, Yale Coll, New Haven, CT USA
关键词
PILR-ALPHA; ANTIGENS; REGRESSION; FAMILY; LIGAND; MEMORY; MOUSE; CD28; CD4;
D O I
10.1126/science.aaz8658
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
T cell quiescence is essential for maintaining a broad repertoire against a large pool of diverse antigens from microbes and tumors, but the underlying molecular mechanisms remain largely unknown. We show here that CD8 alpha is critical for the maintenance of CD8(+) T cells in a physiologically quiescent state in peripheral lymphoid organs. Upon inducible deletion of CD8 alpha, both naive and memory CD8(+) T cells spontaneously acquired activation phenotypes and subsequently died without exposure to specific antigens. PILRa was identified as a ligand for CD8 alpha in both mice and humans, and disruption of this interaction was able to break CD8(+) T cell quiescence. Thus, peripheral T cell pool size is actively maintained by the CD8 alpha-PILR alpha interaction in the absence of antigen exposure.
引用
收藏
页码:996 / +
页数:48
相关论文
共 50 条
  • [21] CD8 T cell memory development: CD4 T cell help is appreciated
    Aaruni Khanolkar
    Vladimir P. Badovinac
    John T. Harty
    Immunologic Research, 2007, 39 : 94 - 104
  • [22] Human MAIT and CD8αα cells develop from a pool of type-17 precommitted CD8+ T cells
    Walker, Lucy J.
    Kang, Yu-Hoi
    Smith, Matthew O.
    Tharmalingham, Hannah
    Ramamurthy, Narayan
    Fleming, Vicki M.
    Sahgal, Natasha
    Leslie, Alistair
    Oo, Ye
    Geremia, Alessandra
    Scriba, Thomas J.
    Hanekom, Willem A.
    Lauer, Georg M.
    Lantz, Olivier
    Adams, David H.
    Powrie, Fiona
    Barnes, Eleanor
    Klenerman, Paul
    BLOOD, 2012, 119 (02) : 422 - 433
  • [23] CD4/CD8/Dendritic cell complexes in the spleen: CD8 +T cells can directly bind CD4+ T cells and modulate their response
    Barinov, Aleksandr
    Galgano, Alessia
    Krenn, Gerald
    Tanchot, Corinne
    Vasseur, Florence
    Rocha, Benedita
    PLOS ONE, 2017, 12 (07):
  • [24] Metabolic Challenges in Anticancer CD8 T Cell Functions
    Amitrano, Andrea M.
    Kim, Minsoo
    IMMUNE NETWORK, 2023, 23 (01)
  • [25] CD8 T Cell Virus Inhibition Assay Protocol
    Xu, Yinyan
    Weideman, Ann Marie
    Abad-Fernandez, Maria
    Mollan, Katie R.
    Kallon, Sallay
    Samir, Shahryar
    Warren, Joanna A.
    Clutton, Genevieve
    Roan, Nadia
    Adimora, Adaora A.
    Archin, Nancie
    Kuruc, JoAnn
    Gay, Cindy
    Hudgens, Michael G.
    Goonetilleke, Nilu
    BIO-PROTOCOL, 2022, 12 (06):
  • [26] CD8 T cell persistence in treated HIV infection
    Mudd, Joseph C.
    Lederman, Michael M.
    CURRENT OPINION IN HIV AND AIDS, 2014, 9 (05) : 500 - 505
  • [27] CD8 T cell immunome analysis of Listeria monocytogenes
    Kamm, C
    Skoberne, M
    Geginat, G
    FEMS IMMUNOLOGY AND MEDICAL MICROBIOLOGY, 2003, 35 (03): : 235 - 242
  • [28] Epigenomics of human CD8 T cell differentiation and aging
    Moskowitz, David M.
    Zhang, David W.
    Hu, Bin
    Le Saux, Sabine
    Yanes, Rolando E.
    Ye, Zhongde
    Buenrostro, Jason D.
    Weyand, Cornelia M.
    Greenleaf, William J.
    Goronzy, Jorg J.
    SCIENCE IMMUNOLOGY, 2017, 2 (08)
  • [29] The narrowing of the CD8 T cell repertoire in old age
    Blackman, Marcia A.
    Woodland, David L.
    CURRENT OPINION IN IMMUNOLOGY, 2011, 23 (04) : 537 - 542
  • [30] Targeting CD8 T-cell metabolism in transplantation
    Yap, Michelle
    Brouard, Sophie
    Pecqueur, Claire
    Degauque, Nicolas
    FRONTIERS IN IMMUNOLOGY, 2015, 6