Evaluating femtosecond laser ablation of graphene on SiO2/Si substrate

被引:22
作者
Dong, Tianqi [1 ]
Sparkes, Martin [1 ]
Durkan, Colm [2 ]
O'Neill, William [1 ]
机构
[1] Univ Cambridge, Inst Mfg, Cambridge CB3 0FS, England
[2] Univ Cambridge, Nanosci Ctr, Cambridge CB3 0FF, England
基金
英国工程与自然科学研究理事会;
关键词
femtosecond laser; graphene; SiO2/Si Substrate; RAMAN-SPECTROSCOPY;
D O I
10.2351/1.4944510
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We demonstrate a uniform single layer micropattern of graphene on 300 nm thick SiO2 on a Si substrate using a 1030 nm, 280 fs laser. The cutting process was conducted in air, the pattern defined through the motion of a high-precision translation stage. Approximately 1.6 mu m wide graphene microchannels were cut with uniform widths and well defined edges. The ablation threshold of graphene was determined to be 66-120 mJ/cm(2), at which the selective removal of graphene was achieved without damage to the SiO2/Si substrate. Scanning electron microscopy images revealed high quality cuts (standard deviation 40 nm) with little damage or re-deposition. Raman maps showed no discernible laser induced damage in the graphene within the ablation zone. Atomic force microscopy revealed an edge step height ranging from less than 2 to 10 nm, suggesting little removal of SiO2 and no damage to the silicon (the central path showed sub ablation threshold swelling). The effect of the ultrafast laser on the surface potential at the cut edge has been measured and it showed a distinguishable boundary. (C) 2016 Laser Institute of America.
引用
收藏
页数:6
相关论文
共 27 条
[1]   Precision cutting and patterning of graphene with helium ions [J].
Bell, D. C. ;
Lemme, M. C. ;
Stern, L. A. ;
RWilliams, J. ;
Marcus, C. M. .
NANOTECHNOLOGY, 2009, 20 (45)
[2]  
Bonaccorso F, 2010, NAT PHOTONICS, V4, P611, DOI [10.1038/NPHOTON.2010.186, 10.1038/nphoton.2010.186]
[3]   Production and processing of graphene and 2d crystals [J].
Bonaccorso, Francesco ;
Lombardo, Antonio ;
Hasan, Tawfique ;
Sun, Zhipei ;
Colombo, Luigi ;
Ferrari, Andrea C. .
MATERIALS TODAY, 2012, 15 (12) :564-589
[4]   Nanopatterned Graphene Field Effect Transistor Fabricated Using Block Co-polymer Lithography [J].
Choi, Duyoung ;
Kuru, Cihan ;
Choi, Chulmin ;
Noh, Kunbae ;
Hong, Soon-Kook ;
Das, Santanu ;
Choi, Wonbong ;
Jin, Sungho .
MATERIALS RESEARCH LETTERS, 2014, 2 (03) :131-139
[5]   Patterning of graphene [J].
Feng, Ji ;
Li, Wenbin ;
Qian, Xiaofeng ;
Qi, Jingshan ;
Qi, Liang ;
Li, Ju .
NANOSCALE, 2012, 4 (16) :4883-4899
[6]   Raman spectroscopy of graphene and graphite: Disorder, electron-phonon coupling, doping and nonadiabatic effects [J].
Ferrari, Andrea C. .
SOLID STATE COMMUNICATIONS, 2007, 143 (1-2) :47-57
[7]   The rise of graphene [J].
Geim, A. K. ;
Novoselov, K. S. .
NATURE MATERIALS, 2007, 6 (03) :183-191
[8]   Large Area Resist-Free Soft Lithographic Patterning of Graphene [J].
George, Antony ;
Mathew, S. ;
van Gastel, Raoul ;
Nijland, Maarten ;
Gopinadhan, K. ;
Brinks, Peter ;
Venkatesan, T. ;
ten Elshof, Johan E. .
SMALL, 2013, 9 (05) :711-715
[9]  
Ju L, 2011, NAT NANOTECHNOL, V6, P630, DOI [10.1038/nnano.2011.146, 10.1038/NNANO.2011.146]
[10]   Femtosecond laser induced micropatterning of graphene film [J].
Kalita, Golap ;
Qi, Litao ;
Namba, Yoshiharu ;
Wakita, Koichi ;
Umeno, Masayoshi .
MATERIALS LETTERS, 2011, 65 (11) :1569-1572