SmallClient for big data: an indexing framework towards fast data retrieval

被引:15
作者
Siddiqa, Aisha [1 ]
Karim, Ahmad [2 ]
Chang, Victor [3 ]
机构
[1] Univ Malaya, Fac Comp Sci & Informat Technol, Kuala Lumpur 50603, Malaysia
[2] Bahauddin Zakariya Univ, Dept Informat Technol, Multan 60000, Pakistan
[3] Xian Jiaotong Liverpool Univ, IBSS, Suzhou 100044, Peoples R China
来源
CLUSTER COMPUTING-THE JOURNAL OF NETWORKS SOFTWARE TOOLS AND APPLICATIONS | 2017年 / 20卷 / 02期
关键词
Big data; Big data indexing; Big data retrieval; Big data analytics; Query execution; Data search performance; CLOUD; EFFICIENT; PERFORMANCE; TAXONOMY; STORAGE;
D O I
10.1007/s10586-016-0712-4
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Numerous applications are continuously generating massive amount of data and it has become critical to extract useful information while maintaining acceptable computing performance. The objective of this work is to design an indexing framework which minimizes indexing overhead and improves query execution and data search performance with optimum aggregation of computing performance. We propose SmallClient, an indexing framework to speed up query execution. SmallClient has three modules: block creation, index creation and query execution. Block creation module supports improving data retrieval performance with minimum data uploading overhead. Index creation module allows maximum indexes on a dataset to increase index hit ratio with minimized indexing overhead. Finally, query execution module offers incoming queries to utilize these indexes. The evaluation shows that SmallClient outperforms Hadoop full scan with more than 90% search performance. Meanwhile, indexing overhead of SmallClient is reduced to approximately 50 and 80% for index size and indexing time respectively.
引用
收藏
页码:1193 / 1208
页数:16
相关论文
共 50 条
  • [21] Towards a Conceptual Framework for Customer Intelligence in the Era of Big Data
    Nguyen Anh Khoa Dam
    Thang Le Dinh
    Menvielle, William
    [J]. INTERNATIONAL JOURNAL OF INTELLIGENT INFORMATION TECHNOLOGIES, 2021, 17 (04)
  • [22] Strategic Positioning in Big Data Utilization: Towards a Conceptual Framework
    Wiren, Milla
    Mantymaki, Matti
    [J]. CHALLENGES AND OPPORTUNITIES IN THE DIGITAL ERA, 2018, 11195 : 117 - 128
  • [23] Towards Green Big Data at CERN
    Niemi, Tapio
    Nurminen, Jukka K.
    Liukkonen, Juha-Matti
    Hameri, Ari-Pekka
    [J]. FUTURE GENERATION COMPUTER SYSTEMS-THE INTERNATIONAL JOURNAL OF ESCIENCE, 2018, 81 : 103 - 113
  • [24] A survey on indexing techniques for big data: taxonomy and performance evaluation
    Gani, Abdullah
    Siddiqa, Aisha
    Shamshirband, Shahaboddin
    Hanum, Fariza
    [J]. KNOWLEDGE AND INFORMATION SYSTEMS, 2016, 46 (02) : 241 - 284
  • [25] Big Data, Fast Data and Data Lake Concepts
    Miloslavskaya, Natalia
    Tolstoy, Alexander
    [J]. 7TH ANNUAL INTERNATIONAL CONFERENCE ON BIOLOGICALLY INSPIRED COGNITIVE ARCHITECTURES, (BICA 2016), 2016, 88 : 300 - 305
  • [26] A Big Data Framework for Mining Sensor Data Using Hadoop
    El-Shafeiy, Engy A.
    El-Desouky, Ali I.
    [J]. STUDIES IN INFORMATICS AND CONTROL, 2017, 26 (03): : 365 - 376
  • [27] Evaluation of Parallel Indexing Scheme for Big Data
    Funaki, Kenta
    Hochin, Teruhisa
    Nomiya, Hiroki
    Nakanishi, Hideya
    [J]. 3RD INTERNATIONAL CONFERENCE ON APPLIED COMPUTING AND INFORMATION TECHNOLOGY (ACIT 2015) 2ND INTERNATIONAL CONFERENCE ON COMPUTATIONAL SCIENCE AND INTELLIGENCE (CSI 2015), 2015, : 148 - 153
  • [28] On the analysis of big data indexing execution strategies
    Siddiqa, Aisha
    Karim, Ahmad
    Saba, Tanzila
    Chang, Victor
    [J]. JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2017, 32 (05) : 3259 - 3271
  • [29] BIND: An Indexing Strategy for Big Data Processing
    Habbal, Adib
    Adamu, Fatima Binta
    Hassan, Suhaidi
    Cottrell, R. Les
    White, Bebo
    Kaiiali, Mustafa
    Wazan, Ahmad Samer
    [J]. TENCON 2017 - 2017 IEEE REGION 10 CONFERENCE, 2017, : 645 - 650
  • [30] A big data framework for E-Government in Industry 4.0
    Cu Kim Long
    Agrawal, Rashmi
    Ha Quoc Trung
    Hai Van Pham
    [J]. OPEN COMPUTER SCIENCE, 2021, 11 (01) : 461 - 479