SmallClient for big data: an indexing framework towards fast data retrieval

被引:15
|
作者
Siddiqa, Aisha [1 ]
Karim, Ahmad [2 ]
Chang, Victor [3 ]
机构
[1] Univ Malaya, Fac Comp Sci & Informat Technol, Kuala Lumpur 50603, Malaysia
[2] Bahauddin Zakariya Univ, Dept Informat Technol, Multan 60000, Pakistan
[3] Xian Jiaotong Liverpool Univ, IBSS, Suzhou 100044, Peoples R China
来源
CLUSTER COMPUTING-THE JOURNAL OF NETWORKS SOFTWARE TOOLS AND APPLICATIONS | 2017年 / 20卷 / 02期
关键词
Big data; Big data indexing; Big data retrieval; Big data analytics; Query execution; Data search performance; CLOUD; EFFICIENT; PERFORMANCE; TAXONOMY; STORAGE;
D O I
10.1007/s10586-016-0712-4
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Numerous applications are continuously generating massive amount of data and it has become critical to extract useful information while maintaining acceptable computing performance. The objective of this work is to design an indexing framework which minimizes indexing overhead and improves query execution and data search performance with optimum aggregation of computing performance. We propose SmallClient, an indexing framework to speed up query execution. SmallClient has three modules: block creation, index creation and query execution. Block creation module supports improving data retrieval performance with minimum data uploading overhead. Index creation module allows maximum indexes on a dataset to increase index hit ratio with minimized indexing overhead. Finally, query execution module offers incoming queries to utilize these indexes. The evaluation shows that SmallClient outperforms Hadoop full scan with more than 90% search performance. Meanwhile, indexing overhead of SmallClient is reduced to approximately 50 and 80% for index size and indexing time respectively.
引用
收藏
页码:1193 / 1208
页数:16
相关论文
共 50 条
  • [1] SmallClient for big data: an indexing framework towards fast data retrieval
    Aisha Siddiqa
    Ahmad Karim
    Victor Chang
    Cluster Computing, 2017, 20 : 1193 - 1208
  • [2] Modeling SmallClient indexing framework for big data analytics
    Siddiqa, Aisha
    Karim, Ahmad
    Chang, Victor
    JOURNAL OF SUPERCOMPUTING, 2018, 74 (10) : 5241 - 5262
  • [3] Modeling SmallClient indexing framework for big data analytics
    Aisha Siddiqa
    Ahmad Karim
    Victor Chang
    The Journal of Supercomputing, 2018, 74 : 5241 - 5262
  • [4] Optimization Driven MapReduce Framework for Indexing and Retrieval of Big Data
    Abdalla, Hemn Barzan
    Ahmed, Awder Mohammed
    Al Sibahee, M. A.
    KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS, 2020, 14 (05): : 1886 - 1908
  • [5] Efficient indexing and retrieval of patient information from the big data using MapReduce framework and optimisation
    Merlin, N. R. Gladiss
    Prem, M. Vigilson
    JOURNAL OF INFORMATION SCIENCE, 2023, 49 (02) : 500 - 518
  • [6] Indexing in Big Data
    Nashipudimath, Madhu M.
    Shinde, Subhash K.
    COMPUTING, COMMUNICATION AND SIGNAL PROCESSING, ICCASP 2018, 2019, 810 : 133 - 142
  • [7] Fast Storage and Indexing Method of Big Data in Forest Ecological Station
    Wang X.
    Jia X.
    Chen Z.
    Cui X.
    Xu F.
    Nongye Jixie Xuebao/Transactions of the Chinese Society for Agricultural Machinery, 2021, 52 (08): : 195 - 204and212
  • [8] A Fast Image Retrieval Method Designed for Network Big Data
    Yang, Jiachen
    Jiang, Bin
    Li, Baihua
    Tian, Kun
    Lv, Zhihan
    IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2017, 13 (05) : 2350 - 2359
  • [9] Fast Access and Retrieval of Big Data Based on Unique Identification
    Sheng, Wenshun
    Xu, Aiping
    Wu, Shengli
    INTELLIGENT AUTOMATION AND SOFT COMPUTING, 2022, 32 (03) : 1780 - 1794
  • [10] Towards a Big Data Exploration Framework for Astronomical Archives
    Sciacca, Eva
    Pistagna, Costantino
    Becciani, Ugo
    Costa, Alessandro
    Massimino, Piero
    Riggi, Simone
    Vitello, Fabio
    Bandieramonte, Marilena
    Krokos, Mel
    2014 INTERNATIONAL CONFERENCE ON HIGH PERFORMANCE COMPUTING & SIMULATION (HPCS), 2014, : 351 - 357