Mechanism of Pile-Soil Relative Vertical Displacement under the Freeze-Thaw Action

被引:5
|
作者
Zhang, Ze [1 ]
Feng, Wenjie [1 ]
Zhang, Hu [1 ]
Shi, Xiangyang [1 ]
Ming, Jiao [1 ]
机构
[1] Chinese Acad Sci, Northwest Inst Ecoenvironm & Resources, State Key Lab Frozen Soil Engn, 326 W Donggang Rd, Lanzhou 730000, Gansu, Peoples R China
基金
中国科学院西部之光基金; 中国国家自然科学基金;
关键词
freeze-thaw action; pile-soil relative vertical displacement; frost heave; thaw subsidence; degree of soil compaction;
D O I
10.1520/JTE20170294
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
To effectively mitigate the risk of freeze-thaw disasters, the lines, poles, and piles in point-line constructions need be deployed with careful consideration of the compaction degree control of backfilled soil. Vertical displacements of soil and piles occur at the same time under freeze-thaw action, thereby making it difficult to determine the frost heave and thaw subsidence of piles. To solve this problem, we monitored the vertical displacements of piles and soil simultaneously and found that the pile-soil interaction differs, depending on the variances in backfill density. Such displacement also ultimately results in "pile-soil" system modification synchronization. To determine the vertical displacement of the pile foundation, one must first determine the relative displacement of the pile and soil. This work presents serial experimental results and verifies experimentally that an optimal degree of soil compaction exists in which the pile shows minimal changes in its vertical displacement.
引用
收藏
页码:3646 / 3655
页数:10
相关论文
共 50 条
  • [31] Fractal analysis of cracking in a clayey soil under freeze-thaw cycles
    Lu, Yang
    Liu, Sihong
    Weng, Liping
    Wang, Liujiang
    Li, Zhuo
    Xu, Lei
    ENGINEERING GEOLOGY, 2016, 208 : 93 - 99
  • [32] Analytical Method for Capped Pile-Soil Interaction considering the Load Action of Soil under the Pile Cap
    Luo, Shilin
    Liu, Mingquan
    Jiang, Jianqing
    Aierken, Ailifeila
    Chang, Jin
    Zhang, Xuewen
    Zhang, Rui
    GEOFLUIDS, 2022, 2022
  • [33] A review on freeze-thaw action and weathering of rocks
    Deprez, Maxim
    De Kock, Tim
    De Schutter, Geert
    Cnudde, Veerle
    EARTH-SCIENCE REVIEWS, 2020, 203
  • [34] Effect of the interlayer on soil temperature and the transformation between phreatic water and soil water under laboratory freeze-thaw action
    Chen, Junfeng
    Ren, Jiameng
    Wang, Erqing
    Cui, Lihong
    Xue, Jing
    Zheng, Xiuqing
    Du, Qi
    FRONTIERS IN EARTH SCIENCE, 2023, 11
  • [35] The influence of freeze-thaw action on loess collapsibility coefficient considering soil structure
    Chou Ya-ling
    Jia Shu-sheng
    Zhang Qing-hai
    Cao Wei
    Sehng Yu
    ROCK AND SOIL MECHANICS, 2018, 39 (08) : 2715 - +
  • [36] Influence of freeze-thaw action on mechanical behavior of saturated crushable volcanic soil
    Ishikawa, T.
    Miura, S.
    Ito, K.
    Ozaki, Y.
    DEFORMATION CHARACTERISTICS OF GEOMATERIALS, VOLS 1 AND 2, 2008, : 557 - +
  • [37] Numerical simulation analysis of pile-soil interaction under earthquake action
    Wang, Yifei
    Huang, Zhanfang
    Hu, Ruixue
    Bai, Lichao
    Zheng, Junjie
    Chen, Yi
    Bai, Xiaohong
    PLOS ONE, 2025, 20 (03):
  • [38] A potential damage mechanism of rubberized cement under freeze-thaw cycle
    Hua, Linxin
    Xiao, Feipeng
    Li, Yitao
    Huang, Hongbin
    Zhao, Kewei
    Yu, Kexin
    Hettiarachchi, Chamod
    CONSTRUCTION AND BUILDING MATERIALS, 2020, 252
  • [39] Deterioration mechanism of sulfate attack on concrete under freeze-thaw cycles
    Ditao Niu
    Lei Jiang
    Qiannan Fei
    Journal of Wuhan University of Technology-Mater. Sci. Ed., 2013, 28 : 1172 - 1176
  • [40] Deterioration Mechanism of Sulfate Attack on Concrete under Freeze-thaw Cycles
    Niu Ditao
    Jiang Lei
    Fei Qiannan
    JOURNAL OF WUHAN UNIVERSITY OF TECHNOLOGY-MATERIALS SCIENCE EDITION, 2013, 28 (06): : 1172 - 1176