NONCOMMUTATIVE GRAVITY VIA SO(2,3) NONCOMMUTATIVE GAUGE THEORY

被引:0
作者
Ciric, Marija Dimitrijevic [1 ]
Radovanovic, Voja [1 ]
机构
[1] Univ Belgrade, Fac Phys, Studentski Trg 12, Belgrade 11000, Serbia
来源
ROMANIAN JOURNAL OF PHYSICS | 2016年 / 61卷 / 1-2期
关键词
gauge theory of gravity; Seiberg-Witten map; 2nd order expansion; x-dependent cosmological constant;
D O I
暂无
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper the noncommutative gravity is treated as a gauge theory of the non commutative SO(2, 3)(*) group on the noncommutative space with the constant noncommutativity. The enveloping algebra approach and the Seiberg-Witten map are used to relate noncommutative and the commutative gauge theory. By combining different actions a noncommutative gravity model is constructed in such a way that the cosmological constant term is not present in the commutative limit, but it is generated by the noncommutativity and it appears in the higher order expansion. We calculate the second order correction to this model and obtain terms that are zero-th, first, ... and fourth power of the curvature tensor. Finally, we discuss physical consequences of those correction terms in the low energy limit.
引用
收藏
页码:89 / 98
页数:10
相关论文
共 12 条
[1]  
[Anonymous], PHYS REV D
[2]   Noncommutative gravity at second order via Seiberg-Witten map [J].
Aschieri, Paolo ;
Castellani, Leonardo ;
Dimitrijevic, Marija .
PHYSICAL REVIEW D, 2013, 87 (02)
[3]   Noncommutative D=4 gravity coupled to fermions [J].
Aschieri, Paolo ;
Castellani, Leonardo .
JOURNAL OF HIGH ENERGY PHYSICS, 2009, (06)
[4]   Noncommutative deformation of four-dimensional Einstein gravity [J].
Cardella, MA ;
Zanon, D .
CLASSICAL AND QUANTUM GRAVITY, 2003, 20 (08) :L95-L103
[5]   Deforming Einstein's gravity [J].
Chamseddine, AH .
PHYSICS LETTERS B, 2001, 504 (1-2) :33-37
[6]  
Dimitrijevic M., UNPUB
[7]   Noncommutative SO(2,3) gauge theory and noncommutative gravity [J].
Dimitrijevic, Marija ;
Radovanovic, Voja .
PHYSICAL REVIEW D, 2014, 89 (12)
[8]   AdS-inspired noncommutative gravity on the Moyal plane [J].
Dimitrijevic, Marija ;
Radovanovic, Voja ;
Stefancic, Hrvoje .
PHYSICAL REVIEW D, 2012, 86 (10)
[9]   Enveloping algebra-valued gauge transformations for non-abelian gauge groups on non-commutative spaces [J].
Jurco, B ;
Schraml, S ;
Schupp, P ;
Wess, J .
EUROPEAN PHYSICAL JOURNAL C, 2000, 17 (03) :521-526
[10]   UNIFIED GEOMETRIC THEORY OF GRAVITY AND SUPERGRAVITY [J].
MACDOWELL, SW ;
MANSOURI, F .
PHYSICAL REVIEW LETTERS, 1977, 38 (14) :739-742