GFDL's SPEAR Seasonal Prediction System: Initialization and Ocean Tendency Adjustment (OTA) for Coupled Model Predictions

被引:56
作者
Lu, Feiyu [1 ,2 ]
Harrison, Matthew J. [2 ]
Rosati, Anthony [2 ,3 ]
Delworth, Thomas L. [2 ]
Yang, Xiaosong [2 ,3 ]
Cooke, William F. [2 ,3 ]
Jia, Liwei [2 ,3 ]
McHugh, Colleen [2 ,4 ]
Johnson, Nathaniel C. [2 ]
Bushuk, Mitchell [2 ,3 ]
Zhang, Yongfei [1 ,2 ]
Adcroft, Alistair [1 ,2 ]
机构
[1] Princeton Univ, Dept Geosci, Princeton, NJ 08544 USA
[2] NOAA, Geophys Fluid Dynam Lab, Princeton, NJ 08540 USA
[3] Univ Corp Atmospher Res, Boulder, CO USA
[4] Sci Applicat Int Corp, SAIC, Reston, VA USA
基金
美国海洋和大气管理局;
关键词
seasonal prediction; data assimilation; coupled model; SPEAR; model bias; model initialization; SEA-SURFACE TEMPERATURE; TO-INTERANNUAL PREDICTION; DATA ASSIMILATION; CLIMATE MODELS; GLOBAL ATMOSPHERE; IN-SITU; ENSO; BIAS; ICE; SIMULATIONS;
D O I
10.1029/2020MS002149
中图分类号
P4 [大气科学(气象学)];
学科分类号
0706 ; 070601 ;
摘要
The next-generation seasonal prediction system is built as part of the Seamless System for Prediction and EArth System Research (SPEAR) at the Geophysical Fluid Dynamics Laboratory (GFDL) of the National Oceanic and Atmospheric Administration (NOAA). SPEAR is an effort to develop a seamless system for prediction and research across time scales. The ensemble-based ocean data assimilation (ODA) system is updated for Modular Ocean Model Version 6 (MOM6), the ocean component of SPEAR. Ocean initial conditions for seasonal predictions, as well as an ocean state estimation, are produced by the MOM6 ODA system in coupled SPEAR models. Initial conditions of the atmosphere, land, and sea ice components for seasonal predictions are constructed through additional nudging experiments in the same coupled SPEAR models. A bias correction scheme called ocean tendency adjustment (OTA) is applied to coupled model seasonal predictions to reduce model drift. OTA applies the climatological temperature and salinity increments obtained from ODA as three-dimensional tendency terms to the MOM6 ocean component of the coupled SPEAR models. Based on preliminary retrospective seasonal forecasts, we demonstrate that OTA reduces model drift-especially sea surface temperature (SST) forecast drift-in coupled model predictions and improves seasonal prediction skill for applications such as El Nino-Southern Oscillation (ENSO).
引用
收藏
页数:31
相关论文
共 98 条
[1]   The GFDL Global Ocean and Sea Ice Model OM4.0: Model Description and Simulation Features [J].
Adcroft, Alistair ;
Anderson, Whit ;
Balaji, V. ;
Blanton, Chris ;
Bushuk, Mitchell ;
Dufour, Carolina O. ;
Dunne, John P. ;
Griffies, Stephen M. ;
Hallberg, Robert ;
Harrison, Matthew J. ;
Held, Isaac M. ;
Jansen, Malte F. ;
John, Jasmin G. ;
Krasting, John P. ;
Langenhorst, Amy R. ;
Legg, Sonya ;
Liang, Zhi ;
McHugh, Colleen ;
Radhakrishnan, Aparna ;
Reichl, Brandon G. ;
Rosati, Tony ;
Samuels, Bonita L. ;
Shao, Andrew ;
Stouffer, Ronald ;
Winton, Michael ;
Wittenberg, Andrew T. ;
Xiang, Baoqiang ;
Zadeh, Niki ;
Zhang, Rong .
JOURNAL OF ADVANCES IN MODELING EARTH SYSTEMS, 2019, 11 (10) :3167-3211
[2]  
Alexander MA, 2002, J CLIMATE, V15, P2205, DOI 10.1175/1520-0442(2002)015<2205:TABTIO>2.0.CO
[3]  
2
[4]  
Anderson JL, 2003, MON WEATHER REV, V131, P634, DOI 10.1175/1520-0493(2003)131<0634:ALLSFF>2.0.CO
[5]  
2
[6]  
Antonov J.I., 2006, US Department of Commerce, NOAA, NESDIS, USA, V2, P62
[7]   Characterizing unforced multi-decadal variability of ENSO: a case study with the GFDL CM2.1 coupled GCM [J].
Atwood, A. R. ;
Battisti, D. S. ;
Wittenberg, A. T. ;
Roberts, W. H. G. ;
Vimont, D. J. .
CLIMATE DYNAMICS, 2017, 49 (7-8) :2845-2862
[8]  
Balaji V, 2012, SPRINGERBR EARTH SYS, P33, DOI 10.1007/978-3-642-23360-9_5
[9]   Impact of initialization strategies and observations on seasonal forecast skill [J].
Balmaseda, M. ;
Anderson, D. .
GEOPHYSICAL RESEARCH LETTERS, 2009, 36 (01)
[10]   A multivariate treatment of bias for sequential data assimilation: Application to the tropical oceans [J].
Balmaseda, M. A. ;
Dee, D. ;
Vidard, A. ;
Anderson, D. L. T. .
QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY, 2007, 133 (622) :167-179