Synthesis and electrochemical properties of P2-Na2/3[Ni1/3Mn2/3]O2 microspheres as cathode materials for sodium-ion batteries

被引:26
作者
Hu, Hai [1 ]
Tang, Ke [2 ]
Cao, Shuang [2 ]
Yang, Xiukang [2 ]
Wang, Xianyou [2 ]
机构
[1] Xiangtan Univ, Sch Mech Engn, Xiangtan, Peoples R China
[2] Xiangtan Univ, Sch Chem,Natl Base Int Sci & Technol Cooperat, Hunan Prov Key Lab Electrochem Energy Storage & C, Natl Local Joint Engn Lab Key Mat New Energy Stor, Xiangtan 411105, Hunan, Peoples R China
基金
中国国家自然科学基金;
关键词
Sodium-ion batteries; P2-Na-2/3[Ni1/3Mn2/3]O-2 cathode material; Monodisperse microspheres; High tapping density; High capacity retention;
D O I
10.1016/j.jallcom.2020.157768
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
P2-Na-2/3[Ni1/3Mn2/3]O(2 )microspheres with well-distributed particle size and high tapping density have been successfully prepared via a hydroxide co-precipitation route associated with the solid-state reaction. The as-prepared P2-Na-2/3[Ni1/3Mn2/3]O-2 sample has a high tapping density of 2.23 g cm(-3) and hexagonal morphology indexed to P6(3)/mmc space group. At the same time, it consists of monodisperse microspheres with a diameter of 5-8 mu m, which are closely assembled by many plate-like primary nanoparticles. As cathode material for sodium-ion batteries (abbreviated as SIBs), it exhibits a high initial capacity of 87.8 mAh g(-1) at 0.1 C in the voltage window of 2.3-4.1 V and demonstrates excellent capacity retention of 97.5% after 100 cycles. Therefore, P2-Na-2/3[Ni1/3Mn2/3]O-2 microspheres will be a hopeful cathode material for the application of sodium-ion batteries. (C) 2020 Elsevier B.V. All rights reserved.
引用
收藏
页数:8
相关论文
共 45 条
[1]   Improvement of the Cathode Electrolyte Interphase on P2-Na2/3Ni1/3Mn2/3O2 by Atomic Layer Deposition [J].
Alvarado, Judith ;
Ma, Chuze ;
Wang, Shen ;
Nguyen, Kimberly ;
Kodur, Moses ;
Meng, Ying Shirley .
ACS APPLIED MATERIALS & INTERFACES, 2017, 9 (31) :26518-26530
[2]   Porous nitrogen-doped carbon microspheres as anode materials for lithium ion batteries [J].
Chen, Taiqiang ;
Pan, Likun ;
Loh, T. A. J. ;
Chua, D. H. C. ;
Yao, Yefeng ;
Chen, Qun ;
Li, Dongsheng ;
Qin, Wei ;
Sun, Zhuo .
DALTON TRANSACTIONS, 2014, 43 (40) :14931-14935
[3]   Na+-Conductive Na2Ti3O7-Modified P2-type Na2/3Ni1/3Mn2/3O2 via a Smart in Situ Coating Approach: Suppressing Na+/Vacancy Ordering and P2-O2 Phase Transition [J].
Dang, Rongbin ;
Chen, Minmin ;
Li, Qi ;
Wu, Kang ;
Lee, Yu Lin ;
Hu, Zhongbo ;
Xiao, Xiaoling .
ACS APPLIED MATERIALS & INTERFACES, 2019, 11 (01) :856-864
[4]   Sodium and sodium-ion energy storage batteries [J].
Ellis, Brian L. ;
Nazar, Linda F. .
CURRENT OPINION IN SOLID STATE & MATERIALS SCIENCE, 2012, 16 (04) :168-177
[5]   Routes to High Energy Cathodes of Sodium-Ion Batteries [J].
Fang, Chun ;
Huang, Yunhui ;
Zhang, Wuxing ;
Han, Jiantao ;
Deng, Zhe ;
Cao, Yuliang ;
Yang, Hanxi .
ADVANCED ENERGY MATERIALS, 2016, 6 (05)
[6]   Investigation of the NaNixMn1-xO2 (0 ≤ x ≤ 1) System for Na-Ion Battery Cathode Materials [J].
Fielden, R. ;
Obrovac, M. N. .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2015, 162 (03) :A453-A459
[7]   High Tap Density Li4Ti5O12 Anode Materials Synthesized for High Rate Performance Lithium Ion Batteries [J].
Gao, Yuanrui ;
Cheng, Chongling ;
An, Juan ;
Liu, Hongjiang ;
Zhang, Dengsong ;
Chen, Guorong ;
Shi, Liyi .
CHEMISTRYSELECT, 2018, 3 (02) :348-353
[8]   Understanding the influence of different carbon matrix on the electrochemical performance of Na3V2(PO4)3 cathode for sodium-ion batteries [J].
Gu, Erlong ;
Xu, Jingyi ;
Du, Yichen ;
Ge, Xufang ;
Zhu, Xiaoshu ;
Bao, Jianchun ;
Zhou, Xiaosi .
JOURNAL OF ALLOYS AND COMPOUNDS, 2019, 788 :240-247
[9]   Sodium-ion batteries: present and future [J].
Hwang, Jang-Yeon ;
Myung, Seung-Taek ;
Sun, Yang-Kook .
CHEMICAL SOCIETY REVIEWS, 2017, 46 (12) :3529-3614
[10]   Polyanion-type cathode materials for sodium-ion batteries [J].
Jin, Ting ;
Li, Huangxu ;
Zhu, Kunjie ;
Wang, Peng-Fei ;
Liu, Pei ;
Jiao, Lifang .
CHEMICAL SOCIETY REVIEWS, 2020, 49 (08) :2342-2377