Reversible Insertion of I-Cl Interhalogen in a Graphite Cathode for Aqueous Dual-Ion Batteries

被引:87
作者
Guo, Qiubo [1 ,2 ]
Kim, Keun-Il [2 ]
Li, Shuang [1 ]
Scida, Alexis M. [2 ]
Yu, Pengfei [1 ]
Sandstrom, Sean K. [2 ]
Zhang, Lu [2 ]
Sun, Shuo [1 ]
Jiang, Heng [2 ]
Ni, Qiao [2 ]
Yu, Dongxu [2 ]
Lerner, Michael M. [2 ]
Xia, Hui [1 ]
Ji, Xiulei [2 ]
机构
[1] Nanjing Univ Sci & Technol, Sch Mat Sci & Engn, Nanjing 210094, Peoples R China
[2] Oregon State Univ, Dept Chem, Gilbert Hall 153, Corvallis, OR 97331 USA
基金
中国国家自然科学基金;
关键词
Cathodes - Solid electrolytes - Chlorine compounds - Ions;
D O I
10.1021/acsenergylett.0c02575
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Anion storage in cathode of dual-ion batteries provides leeway for chemistries. For high energy density and better safety, it is desirable but challenging to reversibly intercalate chloride in a graphite cathode because either the oxygen or chlorine evolution reaction can prevail over chloride insertion. The primary barrier is the lack of suitable aqueous electrolytes that suppress these parasitic reactions. Herein, we report an aqueous deep eutectic solvent gel electrolyte that allows reversible chloride storage for graphite based on a chloride-based electrolyte via the formation of iodine-chloride interhalogens. The results suggest three reversible steps: iodine plating on the host surface, oxidation to form I-Cl interhalides, and then intercalation into graphite. As a result, the graphite cathode delivers a high reversible capacity of 291 mAh g(-1) with stable cycling performance. Facilitated by the same mechanism, a porous graphenic carbon delivered a record-high capacity of over 1100 mAh g(-1).
引用
收藏
页码:459 / 467
页数:9
相关论文
共 44 条
[1]   Ionic liquids based upon metal halide/substituted quaternary ammonium salt mixtures [J].
Abbott, AP ;
Capper, G ;
Davies, DL ;
Rasheed, R .
INORGANIC CHEMISTRY, 2004, 43 (11) :3447-3452
[2]   Enabling bis(fluorosulfonyl)imide-based ionic liquid electrolytes for application in dual-ion batteries [J].
Beltrop, Kolja ;
Qi, Xin ;
Hering, Tobias ;
Roeser, Stephan ;
Winter, Martin ;
Placke, Tobias .
JOURNAL OF POWER SOURCES, 2018, 373 :193-202
[3]   Electrochemistry of Iodide, Iodine, and Iodine Monochloride in Chloride Containing Nonhaloaluminate Ionic Liquids [J].
Bentley, Cameron L. ;
Bond, Alan M. ;
Hollenkamp, Anthony F. ;
Mahon, Peter J. ;
Zhang, Jie .
ANALYTICAL CHEMISTRY, 2016, 88 (03) :1915-1921
[4]   MAGNETO-OPTICAL STUDIES OF GRAPHITE INTERCALATION COMPOUNDS [J].
CHUNG, DDL ;
DRESSELHAUS, MS .
PHYSICA B & C, 1977, 89 (APR) :131-138
[5]   Interpretation of Raman spectra of disordered and amorphous carbon [J].
Ferrari, AC ;
Robertson, J .
PHYSICAL REVIEW B, 2000, 61 (20) :14095-14107
[6]   A High-Potential Anion-Insertion Carbon Cathode for Aqueous Zinc Dual-Ion Battery [J].
Guo, Qiubo ;
Kim, Keun-il ;
Jiang, Heng ;
Zhang, Lu ;
Zhang, Chong ;
Yu, Dongxu ;
Ni, Qiao ;
Chang, Xiaoqing ;
Chen, Tingting ;
Xia, Hui ;
Ji, Xiulei .
ADVANCED FUNCTIONAL MATERIALS, 2020, 30 (38)
[7]   Improving the cycle life of a high-rate, high-potential aqueous dual ion battery using hyper-dendritic zinc and copper hexacyanoferrate [J].
Gupta, Tanya ;
Kim, Andrew ;
Phadke, Satyajit ;
Biswas, Shaurjo ;
Luong, Thao ;
Hertzberg, Benjamin J. ;
Chamoun, Mylad ;
Evans-Lutterodt, Kenneth ;
Steingart, Daniel A. .
JOURNAL OF POWER SOURCES, 2016, 305 :22-29
[8]   Exploiting Mechanistic Solvation Kinetics for Dual-Graphite Batteries with High Power Output at Extremely Low Temperature [J].
Holoubek, John ;
Yin, Yijie ;
Li, Mingqian ;
Yu, Mingyu ;
Meng, Ying Shirley ;
Liu, Ping ;
Chen, Zheng .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2019, 58 (52) :18892-18897
[9]   A Dual Plating Battery with the Iodine/[ZnIx(OH2)4-x]2-x Cathode [J].
Hong, Jessica J. ;
Zhu, Liangdong ;
Chen, Cheng ;
Tang, Longteng ;
Jiang, Heng ;
Jin, Bei ;
Gallagher, Trenton C. ;
Guo, Qiubo ;
Fang, Chong ;
Ji, Xiulei .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2019, 58 (44) :15910-15915
[10]   A Dual-Carbon Battery Based on Potassium-Ion Electrolyte [J].
Ji, Bifa ;
Zhang, Fan ;
Wu, Nanzhong ;
Tang, Yongbing .
ADVANCED ENERGY MATERIALS, 2017, 7 (20)