Electrowetting-on-dielectric (EWOD) digital microfluidic device for in-line workup in organic reactions: A critical step in the drug discovery work cycle

被引:21
作者
Torabinia, Matin [1 ]
Dakarapu, Udaya Sree [2 ]
Asgari, Parham [2 ]
Jeon, Junha [2 ]
Moon, Hyejin [1 ]
机构
[1] Univ Texas Arlington, Mech & Aerosp Engn, Arlington, TX 76019 USA
[2] Univ Texas Arlington, Chem & Biochem, Arlington, TX 76019 USA
来源
SENSORS AND ACTUATORS B-CHEMICAL | 2021年 / 330卷 / 330期
基金
美国国家科学基金会;
关键词
Electrowetting-on-dielectric (EWOD) digital; microfluidic device; Organic chemistry; In-line workup; Purification; Combinatorial synthesis; LIQUID-LIQUID-EXTRACTION; PHASE-SEPARATION; COMBINATORIAL SYNTHESIS; MICROCHEMICAL SYNTHESIS; FLOW; NANOPARTICLES; MICROREACTOR; TECHNOLOGY; ACTUATION; DROPLETS;
D O I
10.1016/j.snb.2020.129252
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
As microfluidic systems play important roles to advance chemical synthesis applications in pharmaceutical and life science fields, the demand for fully-automated chemical synthesis work cycles grows. A successful automation of chemical synthesis with high yields requires not only executing sequential steps of organic chemical reactions, but also simple and adaptive purification (i.e., workup) techniques in each step. Despite recent advances in microreactor technologies, seamlessly integrating reactions and work-up toward a fully-automated chemical synthesis platform is an unmet challenge. In this study, we have demonstrated an electrowetting-ondielectric (EWOD) digital microfluidic device (DMF) as an efficient in-line work-up tool for organic chemical synthesis reactions. The model protocol performed on EWOD DMF involves an acid-base workup, liquid-liquid extraction (LLE), and in-line solvent-swap. Device operation parameters of each reactant and unit process have been optimized. This study manifests the capacity of an EWOD device to transform into a drug discovery platform, particularly by hosting synthetically important reactions that require complicated work-up sequences.
引用
收藏
页数:9
相关论文
共 53 条
  • [1] On-demand continuous-flow production of pharmaceuticals in a compact, reconfigurable system
    Adamo, Andrea
    Beingessner, Rachel L.
    Behnam, Mohsen
    Chen, Jie
    Jamison, Timothy F.
    Jensen, Klavs F.
    Monbaliu, Jean-Christophe M.
    Myerson, Allan S.
    Revalor, Eve M.
    Snead, David R.
    Stelzer, Torsten
    Weeranoppanant, Nopphon
    Wong, Shin Yee
    Zhang, Ping
    [J]. SCIENCE, 2016, 352 (6281) : 61 - 67
  • [2] Advanced organic synthesis using microreactor technology
    Ahmed-Omer, Batoul
    Brandt, Johan C.
    Wirth, Thomas
    [J]. ORGANIC & BIOMOLECULAR CHEMISTRY, 2007, 5 (05) : 733 - 740
  • [3] Countercurrent laminar microflow for highly efficient solvent extraction
    Aota, Arata
    Nonaka, Masaki
    Hibara, Akihide
    Kitamori, Takehiko
    [J]. ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2007, 46 (06) : 878 - 880
  • [4] Parallel multiphase microflows: fundamental physics, stabilization methods and applications
    Aota, Arata
    Mawatari, Kazuma
    Kitamori, Takehiko
    [J]. LAB ON A CHIP, 2009, 9 (17) : 2470 - 2476
  • [5] Phase separation of gas-liquid and liquid-liquid microflows in microchips
    Aota, Arata
    Mawatari, Kazuma
    Takahashi, Susumu
    Matsumoto, Teruki
    Kanda, Kazuteru
    Anraku, Ryo
    Hibara, Akihide
    Tokeshi, Manabu
    Kitamori, Takehiko
    [J]. MICROCHIMICA ACTA, 2009, 164 (3-4) : 249 - 255
  • [6] Combinatorial microfluidic droplet engineering for biomimetic material synthesis
    Bawazer, Lukmaan A.
    McNally, Ciara S.
    Empson, Christopher J.
    Marchant, William J.
    Comyn, Tim P.
    Niu, Xize
    Cho, Soongwon
    McPherson, Michael J.
    Binks, Bernard P.
    deMello, Andrew
    Meldrum, Fiona C.
    [J]. SCIENCE ADVANCES, 2016, 2 (10):
  • [7] Liquid-liquid phase separation: characterisation of a novel device capable of separating particle carrying multiphase flows
    Castell, Oliver K.
    Allender, Christopher J.
    Barrow, David A.
    [J]. LAB ON A CHIP, 2009, 9 (03) : 388 - 396
  • [8] Continuous Hydrolysis and Liquid-Liquid Phase Separation of an Active Pharmaceutical Ingredient Intermediate Using a Miniscale Hydrophobic Membrane Separator
    Cervera-Padrell, Albert E.
    Morthensen, Sofie T.
    Lewandowski, Daniel J.
    Skovby, Tommy
    Kiil, Soren
    Gernaey, Krist V.
    [J]. ORGANIC PROCESS RESEARCH & DEVELOPMENT, 2012, 16 (05) : 888 - 900
  • [9] Creating, transporting, cutting, and merging liquid droplets by electrowetting-based actuation for digital microfluidic circuits
    Cho, SK
    Moon, HJ
    Kim, CJ
    [J]. JOURNAL OF MICROELECTROMECHANICAL SYSTEMS, 2003, 12 (01) : 70 - 80
  • [10] A Concise Flow Synthesis of Efavirenz
    Correia, Camille A.
    Gilmore, Kerry
    McQuade, D. Tyler
    Seeberger, Peter H.
    [J]. ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2015, 54 (16) : 4945 - 4948