Multisymplectic Lagrangian and Hamiltonian Formalisms of Classical Field Theories

被引:50
作者
Roman-Roy, Narciso [1 ]
机构
[1] Dept Matemat Aplicada IV, E-08034 Barcelona, Spain
关键词
classical field theories; Lagrangian and Hamiltonian formalisms; fiber bundles; multisymplectic manifolds; PRECANONICAL QUANTIZATION; CONSTRAINT ALGORITHM; GEOMETRIC ASPECTS; MOMENTUM MAP; FORMULATION; BUNDLES; MECHANICS; EQUATIONS; EXTENSION; CALCULUS;
D O I
10.3842/SIGMA.2009.100
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This review paper is devoted to presenting the standard multisymplectic formulation for describing geometrically classical field theories, both the regular and singular cases. First, the main features of the Lagrangian formalism are revisited and, second, the Hamiltonian formalism is constructed using Hamiltonian sections. In both cases, the variational principles leading to the Euler-Lagrange and the Hamilton-De Donder-Weyl equations, respectively, are stated, and these field equations are given in different but equivalent geometrical ways in each formalism. Finally, both are unified in a new formulation ( which has been developed in the last years), following the original ideas of Rusk and Skinner for mechanical systems.
引用
收藏
页数:25
相关论文
共 50 条
  • [41] Dirac algebroids in Lagrangian and Hamiltonian mechanics
    Grabowska, Katarzyna
    Grabowski, Janusz
    [J]. JOURNAL OF GEOMETRY AND PHYSICS, 2011, 61 (11) : 2233 - 2253
  • [42] Hamiltonian and Lagrangian dynamics in a noncommutative space
    Malik, RP
    [J]. MODERN PHYSICS LETTERS A, 2003, 18 (39) : 2795 - 2806
  • [43] Lagrangian and Hamiltonian Taylor variational integrators
    Schmitt, Jeremy
    Shingel, Tatiana
    Leok, Melvin
    [J]. BIT NUMERICAL MATHEMATICS, 2018, 58 (02) : 457 - 488
  • [44] Eulerian field-theoretic closure formalisms for fluid turbulence
    Berera, Arjun
    Salewski, Matthew
    McComb, W. D.
    [J]. PHYSICAL REVIEW E, 2013, 87 (01)
  • [45] L∞-Algebras of Classical Field Theories and the Batalin-Vilkovisky Formalism
    Jurco, Branislav
    Raspollini, Lorenzo
    Samann, Christian
    Wolf, Martin
    [J]. FORTSCHRITTE DER PHYSIK-PROGRESS OF PHYSICS, 2019, 67 (07):
  • [46] The second-order problem for k-presymplectic Lagrangian field theories: application to the Einstein-Palatini model
    Adame-Carrillo, David
    Gaset, Jordi
    Roman-Roy, Narciso
    [J]. REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2022, 116 (01)
  • [47] Construction of Lagrangian and Hamiltonian structures starting from one constant of motion
    Hojman, Sergio A.
    [J]. ACTA MECHANICA, 2015, 226 (03) : 735 - 744
  • [48] A unifying framework for ghost-free Lorentz-invariant Lagrangian field theories
    Li, Wenliang
    [J]. PHYSICS LETTERS B, 2018, 779 : 485 - 491
  • [49] Lagrangian-Hamiltonian formalism for cocontact systems
    Rivas, Xavier
    Torres, Daniel
    [J]. JOURNAL OF GEOMETRIC MECHANICS, 2023, 15 (01) : 1 - 26
  • [50] A geometric approach to the Lagrangian and Hamiltonian formalism of electrodynamics
    Kulyabov, D. S.
    Korolkova, A. V.
    Sevastianov, L. A.
    Eferina, E. G.
    Velieva, T. R.
    [J]. SARATOV FALL MEETING 2016 - LASER PHYSICS AND PHOTONICS XVII; AND COMPUTATIONAL BIOPHYSICS AND ANALYSIS OF BIOMEDICAL DATA III, 2017, 10337