This review paper is devoted to presenting the standard multisymplectic formulation for describing geometrically classical field theories, both the regular and singular cases. First, the main features of the Lagrangian formalism are revisited and, second, the Hamiltonian formalism is constructed using Hamiltonian sections. In both cases, the variational principles leading to the Euler-Lagrange and the Hamilton-De Donder-Weyl equations, respectively, are stated, and these field equations are given in different but equivalent geometrical ways in each formalism. Finally, both are unified in a new formulation ( which has been developed in the last years), following the original ideas of Rusk and Skinner for mechanical systems.
机构:
CSIC UAM UC3M UCM, Inst Ciencias Matemat, Madrid 28006, SpainCSIC UAM UC3M UCM, Inst Ciencias Matemat, Madrid 28006, Spain
De Leon, M.
De Diego, D. Martin
论文数: 0引用数: 0
h-index: 0
机构:
CSIC UAM UC3M UCM, Inst Ciencias Matemat, Madrid 28006, SpainCSIC UAM UC3M UCM, Inst Ciencias Matemat, Madrid 28006, Spain
De Diego, D. Martin
Salgado, M.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Santiago de Compostela, Fac Matemat, Dept Xeometria & Topoloxia, Santiago De Compostela 15782, SpainCSIC UAM UC3M UCM, Inst Ciencias Matemat, Madrid 28006, Spain
Salgado, M.
Vilarino, S.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Santiago de Compostela, Fac Matemat, Dept Xeometria & Topoloxia, Santiago De Compostela 15782, SpainCSIC UAM UC3M UCM, Inst Ciencias Matemat, Madrid 28006, Spain
机构:
Islamic Azad Univ, Urmia Branch, Dept Phys, Orumiyeh, IranIslamic Azad Univ, Urmia Branch, Dept Phys, Orumiyeh, Iran
Golmankhaneh, Alireza Khalili
Golmankhaneh, Ali Khalili
论文数: 0引用数: 0
h-index: 0
机构:
Islamic Azad Univ, Urmia Branch, Dept Phys, Orumiyeh, IranIslamic Azad Univ, Urmia Branch, Dept Phys, Orumiyeh, Iran
Golmankhaneh, Ali Khalili
Baleanu, Dumitru
论文数: 0引用数: 0
h-index: 0
机构:
Cankaya Univ, Dept Math & Comp Sci, TR-06530 Ankara, Turkey
Inst Space Sci, Magurele, Romania
King Abdulaziz Univ, Dept Chem & Mat Engn, Fac Engn, Jeddah 21589, Saudi ArabiaIslamic Azad Univ, Urmia Branch, Dept Phys, Orumiyeh, Iran
机构:
CSIC UAM UC3M UCM, Inst Ciencias Matemat, Madrid 28006, SpainCSIC UAM UC3M UCM, Inst Ciencias Matemat, Madrid 28006, Spain
De Leon, M.
De Diego, D. Martin
论文数: 0引用数: 0
h-index: 0
机构:
CSIC UAM UC3M UCM, Inst Ciencias Matemat, Madrid 28006, SpainCSIC UAM UC3M UCM, Inst Ciencias Matemat, Madrid 28006, Spain
De Diego, D. Martin
Salgado, M.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Santiago de Compostela, Fac Matemat, Dept Xeometria & Topoloxia, Santiago De Compostela 15782, SpainCSIC UAM UC3M UCM, Inst Ciencias Matemat, Madrid 28006, Spain
Salgado, M.
Vilarino, S.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Santiago de Compostela, Fac Matemat, Dept Xeometria & Topoloxia, Santiago De Compostela 15782, SpainCSIC UAM UC3M UCM, Inst Ciencias Matemat, Madrid 28006, Spain
机构:
Islamic Azad Univ, Urmia Branch, Dept Phys, Orumiyeh, IranIslamic Azad Univ, Urmia Branch, Dept Phys, Orumiyeh, Iran
Golmankhaneh, Alireza Khalili
Golmankhaneh, Ali Khalili
论文数: 0引用数: 0
h-index: 0
机构:
Islamic Azad Univ, Urmia Branch, Dept Phys, Orumiyeh, IranIslamic Azad Univ, Urmia Branch, Dept Phys, Orumiyeh, Iran
Golmankhaneh, Ali Khalili
Baleanu, Dumitru
论文数: 0引用数: 0
h-index: 0
机构:
Cankaya Univ, Dept Math & Comp Sci, TR-06530 Ankara, Turkey
Inst Space Sci, Magurele, Romania
King Abdulaziz Univ, Dept Chem & Mat Engn, Fac Engn, Jeddah 21589, Saudi ArabiaIslamic Azad Univ, Urmia Branch, Dept Phys, Orumiyeh, Iran