Bimolecular Additives Improve Wide-Band-Gap Perovskites for Efficient Tandem Solar Cells with CIGS

被引:289
作者
Kim, Dong Hoe [1 ,2 ]
Muzzillo, Christopher P. [3 ]
Tong, Jinhui [1 ]
Palmstrom, Axel F. [3 ]
Larson, Bryon W. [1 ]
Choi, Chungseok [4 ,5 ]
Harvey, Steven P. [3 ]
Glynn, Stephen [3 ]
Whitaker, James B. [3 ]
Zhang, Fei [1 ]
Li, Zhen [1 ]
Lu, Haipeng [1 ]
van Hest, Maikel F. A. M. [3 ]
Berry, Joseph J. [3 ]
Mansfield, Lorelle M. [3 ]
Huang, Yu [4 ,5 ]
Yan, Yanfa [6 ,7 ]
Zhu, Kai [1 ]
机构
[1] Natl Renewable Energy Lab, Chem & Nanosci Ctr, 15013 Denver West Pkwy, Golden, CO 80401 USA
[2] Sejong Univ, Dept Nanotechnol & Adv Mat Engn, 209 Neungdong Ro, Seoul 05006, South Korea
[3] Natl Renewable Energy Lab, Mat Sci Ctr, 15013 Denver West Pkwy, Golden, CO 80401 USA
[4] Univ Calif Los Angeles, Dept Mat Sci, Los Angeles, CA 90095 USA
[5] Univ Calif Los Angeles, Engn & Calif NanoSyst Inst, Los Angeles, CA 90095 USA
[6] Univ Toledo, Dept Phys & Astron, Toledo, OH 43606 USA
[7] Univ Toledo, Wright Ctr Photovolta Innovat & Commercializat, Toledo, OH 43606 USA
基金
新加坡国家研究基金会;
关键词
PERFORMANCE; PASSIVATION; PLANAR; IODIDE; PHOTOVOLTAICS; HYSTERESIS;
D O I
10.1016/j.joule.2019.04.012
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Tandem solar cells coupling narrow- and wide-band-gap thin-film polycrystalline absorbers are attractive for achieving ultrahigh efficiency with low manufacturing cost. For established narrow-band-gap CIGS thin-film bottom cells, a challenge is to develop highly efficient polycrystalline wide-band-gap top cells. Here, we demonstrate a 1.68-eV (FA(0.65)MA(0.20)Cs(0.15))Pb(I0.8Br0.2)(3) wide-band-gap perovskite solar cell with an efficiency of similar to 20% enabled by using PEAI and Pb(SCN)(2) complementary additives in the perovskite precursor. The coupling of PEA(+) and SCN- provides a synergistic effect that overcomes growth challenges with either additive individually and improves perovskite film quality with enhanced crystallinity, reduced formation of excess PbI2 (in comparison to using Pb(SCN)(2) additive alone), lower defect density and energetic disorder, and an improved carrier mobility (similar to 47 cm(2)V(-1)s(-1)) and lifetime (similar to 2.9 mu s). When coupling a semi-transparent 1.68-eV perovskite top cell fabricated by this approach with a 1 .1 2-eV CIGS bottom cell, we achieve 25.9%-efficient polycrystalline perovskite/CIGS 4-terminal thin-film tandem solar cells.
引用
收藏
页码:1734 / 1745
页数:12
相关论文
共 59 条
[1]   Maximizing and stabilizing luminescence from halide perovskites with potassium passivation [J].
Abdi-Jalebi, Mojtaba ;
Andaji-Garmaroudi, Zahra ;
Cacovich, Stefania ;
Stavrakas, Camille ;
Philippe, Bertrand ;
Richter, Johannes M. ;
Alsari, Mejd ;
Booker, Edward P. ;
Hutter, Eline M. ;
Pearson, Andrew J. ;
Lilliu, Samuele ;
Savenije, Tom J. ;
Rensmo, Hakan ;
Divitini, Giorgio ;
Ducati, Caterina ;
Friend, Richard H. ;
Stranks, Samuel D. .
NATURE, 2018, 555 (7697) :497-+
[2]   Semi-transparent perovskite solar cells for tandems with silicon and CIGS [J].
Bailie, Colin D. ;
Christoforo, M. Greyson ;
Mailoa, Jonathan P. ;
Bowring, Andrea R. ;
Unger, Eva L. ;
Nguyen, William H. ;
Burschka, Julian ;
Pellet, Norman ;
Lee, Jungwoo Z. ;
Graetzel, Michael ;
Noufi, Rommel ;
Buonassisi, Tonio ;
Salleo, Alberto ;
McGehee, Michael D. .
ENERGY & ENVIRONMENTAL SCIENCE, 2015, 8 (03) :956-963
[3]   Perovskite Photovoltaics: The Path to a Printable Terawatt-Scale Technology [J].
Berry, Joseph J. ;
van de Lagemaat, Jao ;
Al-Jassim, Mowafak M. ;
Kurtz, Sarah ;
Yan, Yanfa ;
Zhu, Kai .
ACS ENERGY LETTERS, 2017, 2 (11) :2540-2544
[4]   Low-Temperature Fabrication of Efficient Wide-Bandgap Organolead Trihalide Perovskite Solar Cells [J].
Bi, Cheng ;
Yuan, Yongbo ;
Fang, Yanjun ;
Huang, Jinsong .
ADVANCED ENERGY MATERIALS, 2015, 5 (06)
[5]   Compositional Engineering for Efficient Wide Band Gap Perovskites with Improved Stability to Photoinduced Phase Segregation [J].
Bush, Kevin A. ;
Frohna, Kyle ;
Prasanna, Rohit ;
Beal, Rachel E. ;
Leijtens, Tomas ;
Swifter, Simon A. ;
McGehee, Michael D. .
ACS ENERGY LETTERS, 2018, 3 (02) :428-435
[6]   23.6%-efficient monolithic perovskite/silicon tandem solar cells with improved stability [J].
Bush, Kevin A. ;
Palmstrom, Axel F. ;
Yu, Zhengshan J. ;
Boccard, Mathieu ;
Cheacharoen, Rongrong ;
Mailoa, Jonathan P. ;
McMeekin, David P. ;
Hoye, Robert L. Z. ;
Bailie, Colin D. ;
Leijtens, Tomas ;
Peters, Ian Marius ;
Minichetti, Maxmillian C. ;
Rolston, Nicholas ;
Prasanna, Rohit ;
Sofia, Sarah ;
Harwood, Duncan ;
Ma, Wen ;
Moghadam, Farhad ;
Snaith, Henry J. ;
Buonassisi, Tonio ;
Holman, Zachary C. ;
Bent, Stacey F. ;
McGehee, Michael D. .
NATURE ENERGY, 2017, 2 (04)
[7]   2D Homologous Perovskites as Light-Absorbing Materials for Solar Cell Applications [J].
Cao, Duyen H. ;
Stoumpos, Constantinos C. ;
Farha, Omar K. ;
Hupp, Joseph T. ;
Kanatzidis, Mercouri G. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2015, 137 (24) :7843-7850
[8]   Controllable Self-Induced Passivation of Hybrid Lead Iodide Perovskites toward High Performance Solar Cells [J].
Chen, Qi ;
Zhou, Huanping ;
Song, Tze-Bin ;
Luo, Song ;
Hong, Ziruo ;
Duan, Hsin-Sheng ;
Dou, Letian ;
Liu, Yongsheng ;
Yang, Yang .
NANO LETTERS, 2014, 14 (07) :4158-4163
[9]   Mixed Cation Thiocyanate-Based Pseudohalide Perovskite Solar Cells with High Efficiency and Stability [J].
Chiang, Yu-Hsien ;
Li, Ming-Hsien ;
Cheng, Hsin-Min ;
Shen, Po-Shen ;
Chen, Peter .
ACS APPLIED MATERIALS & INTERFACES, 2017, 9 (03) :2403-2409
[10]   Synthesis, Single-Crystal Structure and Characterization of (CH3NH3)2Pb(SCN)2I2 [J].
Daub, Michael ;
Hillebrecht, Harald .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2015, 54 (38) :11016-11017