Continuous Multi-Angle Remote Sensing and Its Application in Urban Land Cover Classification

被引:8
作者
Yao, Yuan [1 ,2 ,3 ]
Leung, Yee [3 ,4 ]
Fung, Tung [3 ,4 ]
Shao, Zhenfeng [1 ,2 ]
Lu, Jie [5 ,6 ]
Meng, Deyu [5 ,6 ]
Ying, Hanchi [4 ]
Zhou, Yu [3 ]
机构
[1] Wuhan Univ, Comp Sch, Natl Engn Res Ctr Multimedia Software, Wuhan 430079, Peoples R China
[2] Wuhan Univ, State Key Lab Informat Engn Surveying Mapping & R, Wuhan 430079, Peoples R China
[3] Chinese Univ Hong Kong, Inst Future Cities, Shatin, Hong Kong, Peoples R China
[4] Chinese Univ Hong Kong, Dept Geog & Resource Management, Shatin, Hong Kong, Peoples R China
[5] Xi An Jiao Tong Univ, Sch Math & Stat, Xian 710049, Peoples R China
[6] Xi An Jiao Tong Univ, Natl Engn Lab Algorithm & Anal Technologiy Big Da, Xian 710049, Peoples R China
关键词
continuous multi-angle; remote sensing; earth observation; land cover classification; video satellite; EXTRACTION; IMAGES; FUSION;
D O I
10.3390/rs13030413
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Because of the limitations of hardware devices, such as the sensors, processing capacity, and high accuracy altitude control equipment, traditional optical remote sensing (RS) imageries capture information regarding the same scene from mostly one single angle or a very small number of angles. Nowadays, with video satellites coming into service, obtaining imageries of the same scene from a more-or-less continuous array of angles has become a reality. In this paper, we analyze the differences between the traditional RS data and continuous multi-angle remote sensing (CMARS) data, and unravel the characteristics of the CMARS data. We study the advantages of using CMARS data for classification and try to capitalize on the complementarity of multi-angle information and, at the same time, to reduce the embedded redundancy. Our arguments are substantiated by real-life experiments on the employment of CMARS data in order to classify urban land covers while using a support vector machine (SVM) classifier. They show the superiority of CMARS data over the traditional data for classification. The overall accuracy may increase up to about 9% with CMARS data. Furthermore, we investigate the advantages and disadvantages of directly using the CMARS data, and how such data can be better utilized through the extraction of key features that characterize the variations of spectral reflectance along the entire angular array. This research lay the foundation for the use of CMARS data in future research and applications.
引用
收藏
页数:13
相关论文
共 50 条
  • [41] Land cover classification from remote sensing images based on multi-scale fully convolutional network
    Li, Rui
    Zheng, Shunyi
    Duan, Chenxi
    Wang, Libo
    Zhang, Ce
    GEO-SPATIAL INFORMATION SCIENCE, 2022, 25 (02) : 278 - 294
  • [42] Present Situation and Trend of Remote Sensing Land Use/Cover Classification Extraction
    Jia, Tingfang
    Luo, Yi
    Chen, Juan
    Dong, Wen
    2018 26TH INTERNATIONAL CONFERENCE ON GEOINFORMATICS (GEOINFORMATICS 2018), 2018,
  • [43] The Application of Remote Sensing in the Extraction of Urban land Use Changes
    Shen, Ping
    Zhang, Jing
    Su, Zhenghua
    2011 3RD INTERNATIONAL CONFERENCE ON ENVIRONMENTAL SCIENCE AND INFORMATION APPLICATION TECHNOLOGY ESIAT 2011, VOL 10, PT B, 2011, 10 : 1589 - 1594
  • [44] A self-supervised pre-training scheme for multi-source heterogeneous remote sensing image land cover classification
    Xue Z.
    Yu X.
    Liu J.
    Yang G.
    Liu B.
    Yu A.
    Zhou J.
    Jin S.
    Cehui Xuebao/Acta Geodaetica et Cartographica Sinica, 2024, 53 (03): : 512 - 525
  • [45] Editorial: Advancements in land cover classification and machine learning techniques for Urban areas using remote sensing big data
    Al-Najjar, Husam
    Kalantar, Bahareh
    Abdul Halin, Alfian
    FRONTIERS IN ENVIRONMENTAL SCIENCE, 2025, 13
  • [46] Robust Land Cover Classification With Local–Global Information Decoupling to Address Remote Sensing Anomalous Data
    Xiao, Jianbo
    Cheng, Taotao
    Chen, Deliang
    Chen, Hui
    Li, Ning
    Lu, Yanyan
    Cheng, Liang
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2024, 17 : 5774 - 5789
  • [47] Long-Range Correlation Supervision for Land-Cover Classification From Remote Sensing Images
    Yu, Dawen
    Ji, Shunping
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2023, 61
  • [48] LAND COVER CLASSIFICATION USING VERY HIGH SPATIAL RESOLUTION REMOTE SENSING DATA AND DEEP LEARNING
    Kenins, R.
    LATVIAN JOURNAL OF PHYSICS AND TECHNICAL SCIENCES, 2020, 57 (1-2) : 71 - 77
  • [49] Spatio-temporal classification of land use and land cover and its changes in Kerala using remote sensing and machine learning approach
    Vijay, Anjali
    Varija, K.
    ENVIRONMENTAL MONITORING AND ASSESSMENT, 2024, 196 (05)
  • [50] Interpretable Deep Learning Framework for Land Use and Land Cover Classification in Remote Sensing Using SHAP
    Temenos, Anastasios
    Temenos, Nikos
    Kaselimi, Maria
    Doulamis, Anastasios
    Doulamis, Nikolaos
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2023, 20