Long-Term Behavior of CaO-Based Pellets Supported by Calcium Aluminate Cements in a Long Series of CO2 Capture Cycles

被引:135
作者
Manovic, Vasilije [1 ]
Anthony, Edward J. [1 ]
机构
[1] Nat Resources Canada, CanmetENERGY, Ottawa, ON K1A 1M1, Canada
关键词
LOOPING CYCLES; SORBENT; COMBUSTION; CAPACITY; REACTIVATION; LIMESTONES;
D O I
10.1021/ie9011529
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
A series of carbonation/calcination tests consisting of 1000 cycles was performed with CaO-based pellets prepared using hydrated lime and calcium aluminate cement. The change in CO2 carrying capacity of the sorbent was investigated in a thermogravimetric analyzer (TGA) apparatus and the morphology of residues after those cycles in the TGA was examined by scanning electron microscopy (SEM). Larger quantities of sorbent pellets underwent 300 carbonation/calcination cycles in a tube furnace (TF), and their properties were examined by nitrogen physisorption tests (BET and BJH). The crushing strength of the pellets before and after the CO2 cycles was determined by means of a custom-made strength testing apparatus. The results showed high CO2 carrying capacity in long series of cycles with an extremely high residual activity of the order of 28%. This superior performance is a result of favorable morphology due to the existence of large numbers of nanosized pores suitable for carbonation. This morphology is relatively stable during cycles due to the presence of mayenite (Ca12Al14O33) in the CaO structure. However, the crushing tests showed that pellets lost strength after 300 carbonation/calcination cycles, and this appears to be due to the cracks formed in the pellets. This effect was not observed in smaller particles suitable for use in fluidized bed (FBC) systems.
引用
收藏
页码:8906 / 8912
页数:7
相关论文
共 27 条
[1]   Conversion limits in the reaction of CO2 with lime [J].
Abanades, JC ;
Alvarez, D .
ENERGY & FUELS, 2003, 17 (02) :308-315
[2]   Sorbent cost and performance in CO2 capture systems [J].
Abanades, JC ;
Rubin, ES ;
Anthony, EJ .
INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2004, 43 (13) :3462-3466
[3]   Fluidized bed combustion systems integrating CO2 capture with CaO [J].
Abanades, JC ;
Anthony, EJ ;
Wang, JS ;
Oakey, JE .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2005, 39 (08) :2861-2866
[4]   Determination of the critical product layer thickness in the reaction of CaO with CO2 [J].
Alvarez, D ;
Abanades, JC .
INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2005, 44 (15) :5608-5615
[5]   Solid looping cycles: A new technology for coal conversion [J].
Anthony, Edward J. .
INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2008, 47 (06) :1747-1754
[6]   Long-Term Calcination/Carbonation Cycling and Thermal Pretreatment for CO2 Capture by Limestone and Dolomite [J].
Chen, Zhongxiang ;
Song, Hoon Sub ;
Portillo, Miguel ;
Lim, C. Jim ;
Grace, John R. ;
Anthony, E. J. .
ENERGY & FUELS, 2009, 23 (3-4) :1437-1444
[7]   The rate and extent of uptake of CO2 by a synthetic, CaO-containing sorbent [J].
Dennis, J. S. ;
Pacciani, R. .
CHEMICAL ENGINEERING SCIENCE, 2009, 64 (09) :2147-2157
[8]   Regeneration of sintered limestone sorbents for the sequestration of CO2 from combustion and other systems [J].
Fennell, P. S. ;
Davidson, J. F. ;
Dennis, J. S. ;
Hayhurst, A. N. .
JOURNAL OF THE ENERGY INSTITUTE, 2007, 80 (02) :116-119
[9]   CO2 capture capacity of CaO in long series of carbonation/calcination cycles [J].
Grasa, Gemma S. ;
Abanades, J. Carlos .
INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2006, 45 (26) :8846-8851
[10]   Comparison of Different Natural Sorbents for Removing CO2 from Combustion Gases, as Studied in a Bench-Scale Fluidized Bed [J].
Ives, M. ;
Mundy, R. C. ;
Fennell, P. S. ;
Davidson, J. F. ;
Dennis, J. S. ;
Hayhurst, A. N. .
ENERGY & FUELS, 2008, 22 (06) :3852-3857