Could deep learning in neural networks improve the QSAR models?

被引:22
作者
Gini, G. [1 ]
Zanoli, F. [1 ]
Gamba, A. [2 ]
Raitano, G. [2 ]
Benfenati, E. [2 ]
机构
[1] Politecn Milan, DEIB, Milan, Italy
[2] Ist Ric Farmacol Mario Negri IRCCS, Lab Environm Chem & Toxicol, Milan, Italy
关键词
Classification; feature generation; deep neural networks; Ames test; mutagenicity; SMILES;
D O I
10.1080/1062936X.2019.1650827
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Assessing chemical toxicity is a multidisciplinary process, traditionally involving in vivo, in vitro and in silico tests. Currently, toxicological goal is to reduce new tests on chemicals, exploiting all information yet available. Recent advancements in machine learning and deep neural networks allow computers to automatically mine patterns and learn from data. This technology, applied to (Q)SAR model development, leads to discover by learning the structural-chemical-biological relationships and the emergent properties. Starting from Toxception, a deep neural network predicting activity from the chemical graph image, we designed SmilesNet, a recurrent neural network taking SMILES as the only input. We then integrated the two networks into C-Tox network to make the final classification. Results of our networks, trained on a similar to 20K molecule dataset with Ames test experimental values, match or even outperform the current state of the art. We also extract knowledge from the networks and compare it with the available mutagenic structural alerts. The advantage over traditional QSAR modelling is that our models automatically extract the features without using descriptors. Nevertheless, the model is successful if large numbers of examples are provided and computation is more complex than in classical methods.
引用
收藏
页码:617 / 642
页数:26
相关论文
共 50 条
  • [41] DEEP NEURAL NETWORKS FOR NONPARAMETRIC INTERACTION MODELS WITH DIVERGING DIMENSION
    Bhattacharya, Sohom
    Fan, Jianqing
    Mukherjee, Debarghya
    ANNALS OF STATISTICS, 2024, 52 (06) : 2738 - 2766
  • [42] MULTILINGUAL ACOUSTIC MODELS USING DISTRIBUTED DEEP NEURAL NETWORKS
    Heigold, G.
    Vanhoucke, V.
    Senior, A.
    Nguyen, P.
    Ranzato, M.
    Devin, M.
    Dean, J.
    2013 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2013, : 8619 - 8623
  • [43] A Survey on Attacks and Their Countermeasures in Deep Learning: Applications in Deep Neural Networks, Federated, Transfer, and Deep Reinforcement Learning
    Ali, Haider
    Chen, Dian
    Harrington, Matthew
    Salazar, Nathaniel
    Al Ameedi, Mohannad
    Khan, Ahmad Faraz
    Butt, Ali R.
    Cho, Jin-Hee
    IEEE ACCESS, 2023, 11 : 120095 - 120130
  • [44] Backdoor Attacks on Deep Neural Networks via Transfer Learning from Natural Images
    Matsuo, Yuki
    Takemoto, Kazuhiro
    APPLIED SCIENCES-BASEL, 2022, 12 (24):
  • [45] Transfer Learning based Performance Comparison of the Pre-Trained Deep Neural Networks
    Kumar, Jayapalan Senthil
    Anuar, Syahid
    Hassan, Noor Hafizah
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2022, 13 (01) : 797 - 805
  • [47] Towards Interpretable Deep Learning: A Feature Selection Framework for Prognostics and Health Management Using Deep Neural Networks
    Barraza, Joaquin Figueroa
    Droguett, Enrique Lopez
    Martins, Marcelo Ramos
    SENSORS, 2021, 21 (17)
  • [48] Convergence Analysis for Learning Orthonormal Deep Linear Neural Networks
    Qin, Zhen
    Tan, Xuwei
    Zhu, Zhihui
    IEEE SIGNAL PROCESSING LETTERS, 2024, 31 : 795 - 799
  • [49] A Survey of Sparse-learning Methods for Deep Neural Networks
    Ma, Rongrong
    Niu, Lingfeng
    2018 IEEE/WIC/ACM INTERNATIONAL CONFERENCE ON WEB INTELLIGENCE (WI 2018), 2018, : 647 - 650
  • [50] Learning dynamics of gradient descent optimization in deep neural networks
    Wu, Wei
    Jing, Xiaoyuan
    Du, Wencai
    Chen, Guoliang
    SCIENCE CHINA-INFORMATION SCIENCES, 2021, 64 (05)