The behaviour of aluminium matrix composites under thermal stresses

被引:28
作者
Dash, Khushbu [1 ]
Sukumaran, Suvin [1 ]
Ray, Bankim C. [1 ]
机构
[1] Natl Inst Technol, Dept Met & Mat Engn, Rourkela 769008, India
关键词
aluminium matrix composite; thermal cycling; thermal fatigue; thermal stress; AL-BASED COMPOSITES; CONTROLLED CYCLIC FATIGUE; BETA-EUCRYPTITE PARTICLE; SI ALLOY COMPOSITE; EXPANSION BEHAVIOR; RESIDUAL-STRESSES; MECHANICAL-PROPERTIES; FRACTURE-BEHAVIOR; ELEVATED-TEMPERATURE; DEFORMATION-BEHAVIOR;
D O I
10.1515/secm-2013-0185
中图分类号
TB33 [复合材料];
学科分类号
摘要
The present review work elaborates the behaviour of aluminium matrix composites (AMCs) under various kinds of thermal stresses. AMCs find a number of applications such as automobile brake systems, cryostats, microprocessor lids, space structures, rocket turbine housing, and fan exit guide vanes in gas turbine engines. These applications require operation at varying temperature conditions ranging from high to cryogenic temperatures. The main objective of this paper was to understand the behaviour of AMCs during thermal cycling, under induced thermal stresses and thermal fatigue. It also focuses on the various thermal properties of AMCs such as thermal conductivity and coefficient of thermal expansion (CTE). CTE mismatch between the reinforcement phase and the aluminium matrix results in the generation of residual thermal stress by virtue of fabrication. These thermal stresses increase with increasing volume fraction of the reinforcement and decrease with increasing interparticle spacing. Thermal cycling enhances plasticity at the interface, resulting in deformation at stresses much lower than their yield stress. Low and stable CTE can be achieved by increasing the volume fraction of the reinforcement. The thermal fatigue resistance of AMC can be increased by increasing the reinforcement volume fraction and decreasing the particle size. The thermal conductivity of AMCs decreases with increase in reinforcement volume fraction and porosity.
引用
收藏
页码:1 / 20
页数:20
相关论文
共 204 条
[1]   Thermal residual stresses in co-continuous composites [J].
Agrawal, P ;
Conlon, K ;
Bowman, KJ ;
Sun, CT ;
Cichocki, FR ;
Trumble, KP .
ACTA MATERIALIA, 2003, 51 (04) :1143-1156
[2]   Fatigue damage evaluation in SiCp/2024 by X-ray diffraction method [J].
Akiniwa, Yoshiaki ;
Machiya, Shutaro ;
Tanaka, Keisuke .
INTERNATIONAL JOURNAL OF FATIGUE, 2006, 28 (10) :1406-1412
[3]   THE ANALYSIS OF INTERNAL STRAINS MEASURED BY NEUTRON-DIFFRACTION IN AL-SIC METAL MATRIX COMPOSITES [J].
ALLEN, AJ ;
BOURKE, MAM ;
DAWES, S ;
HUTCHINGS, MT ;
WITHERS, PJ .
ACTA METALLURGICA ET MATERIALIA, 1992, 40 (09) :2361-2373
[4]   Elastic-plastic thermal stress analysis of an aluminum composite disc under parabolic thermal load distribution [J].
Altan, Guerkan ;
Topcu, Muzaffer ;
Bektas, Numan Behluel ;
Altan, Burcin Deda .
JOURNAL OF MECHANICAL SCIENCE AND TECHNOLOGY, 2008, 22 (12) :2318-2327
[5]  
Aria FR, 1993, SCRIPTA METALL MATER, V28, P587
[6]   Thermal expansion behaviour of aluminium/SiC composites with bimodal particle distributions [J].
Arpón, R ;
Molina, JM ;
Saravanan, RA ;
García-Cordovilla, C ;
Louis, E ;
Narciso, J .
ACTA MATERIALIA, 2003, 51 (11) :3145-3156
[7]   THERMAL RESIDUAL-STRESS IN METAL MATRIX COMPOSITE [J].
ARSENAULT, RJ ;
TAYA, M .
ACTA METALLURGICA, 1987, 35 (03) :651-659
[8]   SPECKLE INTERFEROMETRY FOR ANALYZING ANISOTROPIC THERMAL-EXPANSION - APPLICATION TO SPECIMENS AND COMPONENTS [J].
ASWENDT, P ;
HOFLING, R .
COMPOSITES, 1993, 24 (08) :611-617
[9]   Damage of 6061/SiCw composite by thermal cycling [J].
Badini, C ;
LaVecchia, M ;
Giurcanu, A ;
Wenhui, J .
JOURNAL OF MATERIALS SCIENCE, 1997, 32 (04) :921-930
[10]   Thermal fatigue behaviour of a 2014/Al2O3-SiO2 (Saffil® fibers) composite processed by squeeze casting [J].
Badini, C ;
Fino, P ;
Musso, M ;
Dinardo, P .
MATERIALS CHEMISTRY AND PHYSICS, 2000, 64 (03) :247-255