A Schemata Calculus for Propositional Logic

被引:0
作者
Aravantinos, Vincent [1 ]
Caferra, Ricardo [1 ]
Peltier, Nicolas [1 ]
机构
[1] Grenoble INP, CNRS, LIG, F-38400 St Martin Dheres, France
来源
AUTOMATED REASONING WITH ANALYTIC TABLEAUX AND RELATED METHODS, PROCEEDINGS | 2009年 / 5607卷
关键词
UNIFICATION; TERMS;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We define a notion of formula schema handling arithmetic parameters, indexed propositional variables (e.g. P-i) and iterated conjunctions/disjunctions (e.g. boolean AND(n)(i=1) P-i, where n is a parameter). Iterated conjunctions or disjunctions are part of their syntax. We define a sound and complete (w.r.t. satisfiability) tableaux-based proof procedure for this language. This schemata calculus (called STAB) allows one to capture proof patterns corresponding to a large class of problems specified in propositional logic. Although the satisfiability problem is undecidable for unrestricted schemata, we identify a class of them for which STAB always terminates. An example shows evidence that the approach is applicable to non-trivial practical problems. We give some precise technical hints to pursue the present work.
引用
收藏
页码:32 / 46
页数:15
相关论文
共 24 条
[1]  
[Anonymous], 1992, Automated reasoning introduction and applications
[2]   A rewriting approach to satisfiability procedures [J].
Armando, A ;
Ranise, S ;
Rusinowitch, M .
INFORMATION AND COMPUTATION, 2003, 183 (02) :140-164
[3]   Note on the generalization of calculations [J].
Baaz, M .
THEORETICAL COMPUTER SCIENCE, 1999, 224 (1-2) :3-11
[4]  
BAAZ M, 1994, LNCS, V832, P33
[5]   The challenge of computer mathematics [J].
Barendregt, H ;
Wiedijk, F .
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2005, 363 (1835) :2351-2373
[6]   Satisfiability modulo theories [J].
Barrett, Clark ;
Sebastiani, Roberto ;
Seshia, Sanjit A. ;
Tinelli, Cesare .
Frontiers in Artificial Intelligence and Applications, 2009, 185 (01) :825-885
[7]  
BOUHOULA A, 1992, LECT NOTES ARTIF INT, V624, P460
[8]  
Boyer R. S., 1979, COMPUTATIONAL LOGIC
[9]  
BUNDY A, 1990, LECT NOTES ARTIF INT, V449, P647
[10]  
CHEN H, 1991, LECT NOTES COMPUT SC, V516, P100