Estimates of weighted Hardy-Littlewood averages on the p-adic vector space

被引:49
作者
Rim, Kyung Soo [1 ]
Lee, Jaesung [1 ]
机构
[1] Sogang Univ, Dept Math, Seoul 121742, South Korea
关键词
p-adic field; p-adic vector space; weighted Hardy-Littlewood averages; BMO;
D O I
10.1016/j.jmaa.2006.01.038
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In the p-adic vector space Q(p)(n), we characterize those non-negative functions phi defined on Z(p)* = p {w is an element of Q(p): 0 < vertical bar w vertical bar(p) <= 1} for which the weighted Hardy-Littlewood average U phi : f -> integral(Zp)* f(t(.))psi(t)dt is bounded on L-r(Q(p)(n)) (1 <= r <= infinity), and on BMO(Q(p)(n)). Also, in each case, we find the corresponding operator norm parallel to U-psi parallel to. (c) 2006 Elsevier Inc. All rights reserved.
引用
收藏
页码:1470 / 1477
页数:8
相关论文
共 8 条
[1]   RIESZ-POTENTIALS AND EXPLICIT SUMS IN ARITHMETIC [J].
HARAN, S .
INVENTIONES MATHEMATICAE, 1990, 101 (03) :697-703
[2]   ANALYTIC POTENTIAL-THEORY OVER THE P-ADICS [J].
HARAN, S .
ANNALES DE L INSTITUT FOURIER, 1993, 43 (04) :905-944
[3]  
Hardy G.H., 1952, INEQUALITIES
[4]   On p-adic bounded functions, II [J].
Jang, LC ;
Kim, MS ;
Son, JW ;
Kim, T ;
Rim, SH .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2001, 264 (01) :21-31
[5]  
Stein E M., 1993, Harmonic analysis: real-variable methods, orthogonality, and oscillatory integrals
[6]   P-ADIC QUANTUM-MECHANICS [J].
VLADIMIROV, VS ;
VOLOVICH, IV .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1989, 123 (04) :659-676
[7]   Lp and BMO bounds of weighted Hardy-Littlewood averages [J].
Xiao, J .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2001, 262 (02) :660-666
[8]  
Zelenov E.I., 1994, Ser. Soviet & East European Math., V1