Multi-kilometer Long, Longitudinally Uniform Hollow Core Photonic Bandgap Fibers for Broadband Low Latency Data Transmission

被引:73
作者
Chen, Yong [1 ]
Liu, Zhixin [1 ]
Sandoghchi, Seyed R. [1 ]
Jasion, Gregory T. [1 ]
Bradley, Tom D. [1 ]
Fokoua, Eric Numkam [1 ]
Hayes, John R. [1 ]
Wheeler, Natalie V. [1 ]
Gray, David R. [1 ]
Mangan, Brian J. [2 ]
Slavik, Radan [1 ]
Poletti, Francesco [1 ]
Petrovich, Marco N. [1 ]
Richardson, David J. [1 ]
机构
[1] Univ Southampton, Optoelect Res Ctr, Southampton SO17 1BJ, Hants, England
[2] OFS Labs, Somerset, NJ 08873 USA
基金
英国工程与自然科学研究理事会;
关键词
Fiber communications; hollow core; low latency; microstructured optical fibers; photonic bandgap fibers;
D O I
10.1109/JLT.2015.2476461
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The low intrinsic nonlinearity and low signal latency characteristic of Hollow Core Photonic Bandgap Fibers (HC-PBGFs) have fueled strong interest for data transmission applications. Whereas most research to date has looked at improving the optical performance of HC-PBGFs (e.g., reducing the loss, increasing the transmission bandwidth and achieving well-tempered modal properties through the suppression of surface mode resonances). In this study, we address the challenging problem of scaling up the fabrication of these fibers to multi-kilometer lengthsan indispensable step to prove this fiber technology as viable. We report the fabrication of low loss, wide bandwidth HC-PBGFs operating both in the conventional telecoms window (1.55 mu m) and in the predicted region of minimum loss (2 mu m), in lengths that substantially exceed the state of the art. At 2 mu m, we obtained a 3.85 km long fiber with approximate to 3 dB/km loss and > 160 nm wide 3 dB bandwidth. Additionally, we report an HC-PBGF operating at 1.55 mu m with a length of just over 11 km, transmission bandwidth in excess of 200 nm and a longitudinally uniform loss of approximate to 5 dB/km, measured via cutback and an integrated scattering method. We used the latter fiber to demonstrate error-free, low-latency, direct-detection 10 Gb/s transmission across the entire C-Band as well as 20 Gb/s quadrature phase shift keyed transmission. These represent the first demonstrations of data transmission over a length of HC-PBGF exceeding 10 km.
引用
收藏
页码:104 / 113
页数:10
相关论文
共 30 条
  • [1] Control of surface modes in low loss hollow-core photonic bandgap fibers
    Amezcua-Correa, R.
    Gerome, F.
    Leon-Saval, S. G.
    Broderick, N. G. R.
    Birks, T. A.
    Knight, J. C.
    [J]. OPTICS EXPRESS, 2008, 16 (02): : 1142 - 1149
  • [2] Predicting hole sizes after fibre drawing without knowing the viscosity
    Chen, Y.
    Birks, T. A.
    [J]. OPTICAL MATERIALS EXPRESS, 2013, 3 (03): : 346 - 356
  • [3] Chen Y., 2014, OPT FIB COMM C SAN F
  • [4] The dynamic mass transfer of surfactants upon droplet formation in coaxial microfluidic devices
    Chen, Yang
    Liu, Guo-Tao
    Xu, Jian-Hong
    Luo, Guang-Sheng
    [J]. CHEMICAL ENGINEERING SCIENCE, 2015, 132 : 1 - 8
  • [5] Extending transmission bandwidth of air-core photonic bandgap fibers
    Dong, Liang
    Thomas, Brian K.
    Suzuki, Shigeru
    Fu, Libin
    [J]. OPTICAL FIBER TECHNOLOGY, 2010, 16 (06) : 442 - 448
  • [6] Impact of structural distortions on the performance of hollow-core photonic bandgap fibers
    Fokoua, Eric Numkam
    Richardson, David J.
    Poletti, Francesco
    [J]. OPTICS EXPRESS, 2014, 22 (03): : 2735 - 2744
  • [7] Five-ring hollow-core photonic crystal fiber with 1.8 dB/km loss
    Frosz, M. H.
    Nold, J.
    Weiss, T.
    Stefani, A.
    Babic, F.
    Rammler, S.
    Russell, P. St. J.
    [J]. OPTICS LETTERS, 2013, 38 (13) : 2215 - 2217
  • [8] MicroStructure Element Method (MSEM): viscous flow model for the virtual draw of microstructured optical fibers
    Jasion, G. T.
    Shrimpton, J. S.
    Chen, Y.
    Bradley, T.
    Richardson, D. J.
    Poletti, F.
    [J]. OPTICS EXPRESS, 2015, 23 (01): : 312 - 329
  • [9] Jasion G. T., 2015, OPT FIB COMM C LOS A
  • [10] Jung Y., 2013, OPT FIB COMM C AN CA