A note on the restricted partition function pA(n, k)

被引:5
作者
Gajdzica, Krystian [1 ]
机构
[1] Jagiellonian Univ Cracow, Fac Math & Comp Sci, Inst Math, Krakow, Poland
关键词
Partition; Partition function of a finite set; Odd density of restricted partition function; Restricted m-ary partition; Divisibility property of restricted partition function; PARTS; PERIODICITIES; NUMBER;
D O I
10.1016/j.disc.2022.112943
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let A = (a(n))(n is an element of)N+ be a sequence of positive integers. Let p(A)(n, k) denote the number of multi-color partitions of n into parts in {a(1), ... , a(k)}. We examine several arithmetic properties of the sequence (p(A)(n, k) (mod m))n is an element of N for an arbitrary fixed integer m >= 2. We investigate periodicity of the sequence and lower and upper bounds for the density of the set {n is an element of N : p(A)(n, k)equivalent to i (mod m)} for a fixed positive integer k and i is an element of {0, 1, ..., m(-1)}. In particular, we apply our results to the special cases of the sequence A. Furthermore, we present some results related to restricted m-ary partitions. (C) 2022 Elsevier B.V. All rights reserved.
引用
收藏
页数:16
相关论文
共 50 条
[21]   New Recursion Formulas for the Partition Function [J].
Srichan, Teerapat ;
Pimsert, Watcharapon ;
Laohakosol, Vichian .
JOURNAL OF INTEGER SEQUENCES, 2021, 24 (06)
[22]   Parity of Schur's partition function [J].
Chen, Shi-Chao .
COMPTES RENDUS MATHEMATIQUE, 2019, 357 (05) :418-423
[23]   CONGRUENCES FOR k DOTS BRACELET PARTITION FUNCTIONS [J].
Cui, Su-Ping ;
Gu, Nancy Shan Shan .
INTERNATIONAL JOURNAL OF NUMBER THEORY, 2013, 9 (08) :1885-1894
[24]   Restricted growth function patterns and statistics [J].
Campbell, Lindsey R. ;
Dahlberg, Samantha ;
Dorward, Robert ;
Gerhard, Jonathan ;
Grubb, Thomas ;
Purcell, Carlin ;
Sagan, Bruce E. .
ADVANCES IN APPLIED MATHEMATICS, 2018, 100 :1-42
[25]   An improvement on the parity of Schur's partition function [J].
Lu, Yiwen ;
Wei, Tao ;
Guo, Xuejun .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2023, 528 (02)
[26]   Proof of a conjecture of Merca on the cubic partition function [J].
Zhang, Jingzhao ;
Yao, Olivia X. M. .
RAMANUJAN JOURNAL, 2025, 67 (02)
[27]   On the counting function of sets with even partition functions [J].
Ben Said, Fethi ;
Nicolas, Jean-Louis .
PUBLICATIONES MATHEMATICAE DEBRECEN, 2011, 79 (3-4) :687-697
[28]   On a problem on restricted k-colored partitions [J].
Ma, Wu-Xia ;
Chen, Yong-Gao .
INTERNATIONAL JOURNAL OF NUMBER THEORY, 2022, 18 (03) :467-472
[29]   On the density of the odd values of the partition function and the t-multipartition function [J].
Chen, Shi-Chao .
JOURNAL OF NUMBER THEORY, 2021, 225 :198-213
[30]   Some inequalities for k-colored partition functions [J].
Chern, Shane ;
Fu, Shishuo ;
Tang, Dazhao .
RAMANUJAN JOURNAL, 2018, 46 (03) :713-725