A note on the restricted partition function pA(n, k)

被引:5
|
作者
Gajdzica, Krystian [1 ]
机构
[1] Jagiellonian Univ Cracow, Fac Math & Comp Sci, Inst Math, Krakow, Poland
关键词
Partition; Partition function of a finite set; Odd density of restricted partition function; Restricted m-ary partition; Divisibility property of restricted partition function; PARTS; PERIODICITIES; NUMBER;
D O I
10.1016/j.disc.2022.112943
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let A = (a(n))(n is an element of)N+ be a sequence of positive integers. Let p(A)(n, k) denote the number of multi-color partitions of n into parts in {a(1), ... , a(k)}. We examine several arithmetic properties of the sequence (p(A)(n, k) (mod m))n is an element of N for an arbitrary fixed integer m >= 2. We investigate periodicity of the sequence and lower and upper bounds for the density of the set {n is an element of N : p(A)(n, k)equivalent to i (mod m)} for a fixed positive integer k and i is an element of {0, 1, ..., m(-1)}. In particular, we apply our results to the special cases of the sequence A. Furthermore, we present some results related to restricted m-ary partitions. (C) 2022 Elsevier B.V. All rights reserved.
引用
收藏
页数:16
相关论文
共 50 条
  • [2] Generalized congruence properties of the restricted partition function p(n,m)
    Kronholm, Brandt
    RAMANUJAN JOURNAL, 2013, 30 (03) : 425 - 436
  • [3] A NOTE ON THE RESTRICTED k-MULTIPARTITION FUNCTION
    Cimpoeas, Mircea
    Teodor, Alexandra
    UNIVERSITY POLITEHNICA OF BUCHAREST SCIENTIFIC BULLETIN-SERIES A-APPLIED MATHEMATICS AND PHYSICS, 2023, 85 (03): : 11 - 18
  • [4] On congruence properties of the restricted partition functions pω(n,k) and pν(n,k)
    da Silva, Robson
    de Oliveira, Kelvin Souza
    da Graca Neto, Almir Cunha
    RAMANUJAN JOURNAL, 2019, 49 (01) : 105 - 113
  • [5] Generalized congruence properties of the restricted partition function p(n,m)
    Brandt Kronholm
    The Ramanujan Journal, 2013, 30 : 425 - 436
  • [6] On a restricted m-ary partition function
    Lu, QL
    DISCRETE MATHEMATICS, 2004, 275 (1-3) : 347 - 353
  • [7] Higher order Turán inequalities for the distinct partition function
    Dong, Janet J. W.
    Ji, Kathy Q.
    JOURNAL OF NUMBER THEORY, 2024, 260 : 71 - 102
  • [8] DIVISIBILITY OF THE PARTITION FUNCTION PDOt(n) BY POWERS OF 2 AND 3
    Barman, Rupam
    Singh, Gurinder
    Singh, Ajit
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2024, 109 (01) : 14 - 25
  • [9] A note on a cycle partition problem
    Yang, Fengli
    Vumar, Elkin
    APPLIED MATHEMATICS LETTERS, 2011, 24 (07) : 1181 - 1184
  • [10] Some inequalities between M(a, b, c; L; n) and the partition function p(n)
    He, Bing
    Li, Linpei
    Cao, Jian
    CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 2024,