Deep spatial-temporal fusion network for fine-grained air pollutant concentration prediction

被引:2
作者
Ge, Liang [1 ,2 ]
Wu, Kunyan [1 ,2 ]
Chang, Feng [1 ,2 ]
Zhou, Aoli [1 ,2 ]
Li, Hang [1 ,2 ]
Liu, Junling [1 ,2 ]
机构
[1] Chongqing Univ, Coll Comp Sci, Chongqing 400000, Peoples R China
[2] Chongqing Key Lab Software Theory & Technol, Chongqing, Peoples R China
关键词
Air pollutant concentration prediction; deep learning; LSTM; embedding; tensor decomposition; QUALITY;
D O I
10.3233/IDA-195029
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Air pollution is a serious environmental problem that has attracted much attention. Predicting air pollutant concentration can provide useful information for urban environmental governance decision-making and residents' daily health control. However, existing methods fail to model the temporal dependencies or have suffer from a weak ability to capture the spatial correlations of air pollutants. In this paper, we propose a general approach to predict air pollutant concentration, named DSTFN, which consists of a data completion component, a similar region selection component, and a deep spatial-temporal fusion network. The data completion component uses tensor decomposition method to complete the missing data of historical air quality. The similar region selection component uses region metadata to calculate the spatial similarity between regions. The deep spatial-temporal fusion network fuses urban heterogeneous data to capture factors affecting air quality and predict air pollutant concentration. Extensive experiments on a real-world dataset demonstrate that our model achieves the highest performance compared with state-of-the-art models for air quality prediction.
引用
收藏
页码:419 / 438
页数:20
相关论文
共 50 条
[41]   Spatial-Temporal Deep Tensor Neural Networks for Large-Scale Urban Network Speed Prediction [J].
Zhou, Lingxiao ;
Zhang, Shuaichao ;
Yu, Jingru ;
Chen, Xiqun .
IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2020, 21 (09) :3718-3729
[42]   Robust DOA Estimation via a Deep Learning Framework with Joint Spatial-Temporal Information Fusion [J].
Zhao, Yonghong ;
Fan, Xiumei ;
Liu, Jisong .
SENSORS, 2025, 25 (10)
[43]   An Improved Deep Spatial-Temporal Hybrid Model for Bus Speed Prediction [J].
Zhai, Huawei ;
Cui, Licheng ;
Zhang, Weishi ;
Xu, Xiaowei ;
Tian, Ruijie .
MATHEMATICAL PROBLEMS IN ENGINEERING, 2020, 2020 (2020)
[44]   Deep Flexible Structured Spatial-Temporal Model for Taxi Capacity Prediction [J].
Zhou, Wei ;
Yang, Yan ;
Zhang, Yiling ;
Wang, Dongjie ;
Zhang, Xiaobo .
KNOWLEDGE-BASED SYSTEMS, 2020, 205
[45]   Deep Distributed Fusion Network for Air Quality Prediction [J].
Yi, Xiuwen ;
Zhang, Junbo ;
Wang, Zhaoyuan ;
Li, Tianrui ;
Zheng, Yu .
KDD'18: PROCEEDINGS OF THE 24TH ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY & DATA MINING, 2018, :965-973
[46]   A spatial-temporal graph attention network approach for air temperature forecasting [J].
Yu, Xuan ;
Shi, Suixiang ;
Xu, Lingyu .
APPLIED SOFT COMPUTING, 2021, 113 (113)
[47]   MDFF: A Method for Fine-Grained UFZ Mapping With Multimodal Geographic Data and Deep Network [J].
Ouyang, Song ;
Du, Shihong ;
Zhang, Xiuyuan ;
Du, Shouhang ;
Bai, Lubin .
IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2023, 16 :9951-9966
[48]   Spatial-temporal transformer network for multi-year ENSO prediction [J].
Song, Dan ;
Su, Xinqi ;
Li, Wenhui ;
Sun, Zhengya ;
Ren, Tongwei ;
Liu, Wen ;
Liu, An-An .
FRONTIERS IN MARINE SCIENCE, 2023, 10
[49]   Multirepresentation Spatial-Temporal Graph Convolutional Networks for Network Traffic Prediction [J].
Yang, Yang ;
He, Yechen ;
Zhao, Binnan ;
Wu, Celimuge ;
Gao, Zhipeng ;
Rui, Lanlan .
IEEE INTERNET OF THINGS JOURNAL, 2025, 12 (13) :23085-23099
[50]   Spatial-Temporal Tensor Graph Convolutional Network for Traffic Speed Prediction [J].
Xu, Xuran ;
Zhang, Tong ;
Xu, Chunyan ;
Cui, Zhen ;
Yang, Jian .
IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2023, 24 (01) :92-103