Ensemble Churn Prediction for Internet Service Provider with Machine Learning Techniques

被引:0
|
作者
Goy, Gokhan [1 ]
Kolukisa, Burak [1 ]
Bahcevan, Cenk [2 ]
Gungor, Vehbi Cagri [1 ]
机构
[1] Abdullah Gul Univ, Muhendislik Fak, Bilgisayar Muhendisligi, Kayseri, Turkey
[2] TrukNet Iletisim Hizmetleri, Istanbul, Turkey
来源
2020 5TH INTERNATIONAL CONFERENCE ON COMPUTER SCIENCE AND ENGINEERING (UBMK) | 2020年
关键词
Churn Prediction; Binary Classification; Data Mining; Machine Learning;
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
With the developing technology in every fields, a competitive marketing environment has been arised In this competitive environment analyzing customer behavior has become vital In particular, the ability to easily change any service provider has become vet) , critical for the company to continue its existence At the same time, the amount of financial resources spent on retaining instituters much less than to obtain new clients. In this context, the traditional methods of examining vast amount of data obtained today for establishing decision support systems have lost their validities In this study. we used a dataset which is provided by TurkNet serving as an internet service provider in Turkey. Various preprocessing steps has performed on this dataset and then classification algorithms ran. Afterwards results have obtained and compared. The results of these experiments analyzed in terms of the area under the curve value In this context the aunt successful classifier algorithm has been determined as the Random Trees algorithm with a value of 0.936.
引用
收藏
页码:248 / 253
页数:6
相关论文
共 50 条
  • [31] Towards Explainable Machine Learning for Bank Churn Prediction Using Data Balancing and Ensemble-Based Methods
    Tekouabou, Stephane C. K.
    Gherghina, Stefan Cristian
    Toulni, Hamza
    Mata, Pedro Neves
    Martins, Jose Moleiro
    MATHEMATICS, 2022, 10 (14)
  • [32] An Effective Heart Disease Prediction Framework based on Ensemble Techniques in Machine Learning
    Yewale, Deepali
    Vijayaragavan, S. P.
    Bairagi, V. K.
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2023, 14 (02) : 182 - 190
  • [33] A Review on Machine Learning Methods for Customer Churn Prediction and Recommendations for Business Practitioners
    Manzoor, Awais
    Qureshi, M. Atif
    Kidney, Etain
    Longo, Luca
    IEEE ACCESS, 2024, 12 : 70434 - 70463
  • [34] Application of Machine Learning and Statistics in Banking Customer Churn Prediction
    Shukla, Animesh
    2021 8TH INTERNATIONAL CONFERENCE ON SMART COMPUTING AND COMMUNICATIONS (ICSCC), 2021, : 37 - 41
  • [35] CHURN PREDICTION - A COMPARATIVE ANALYSIS WITH SUPERVISED MACHINE LEARNING ALGORITHMS
    Gangadharan, Chika K.
    Alex, Roshni
    Sabu, M. K.
    ADVANCES AND APPLICATIONS IN MATHEMATICAL SCIENCES, 2021, 20 (12): : 3049 - 3060
  • [36] Machine Learning to Develop Credit Card Customer Churn Prediction
    AL-Najjar, Dana
    Al-Rousan, Nadia
    AL-Najjar, Hazem
    JOURNAL OF THEORETICAL AND APPLIED ELECTRONIC COMMERCE RESEARCH, 2022, 17 (04): : 1529 - 1542
  • [37] Ensemble learning model for Protein-Protein interaction prediction with multiple Machine learning techniques
    Lai, Zhenghui
    Li, Mengshan
    Chen, Qianyong
    Gu, Yunlong
    Wang, Nan
    Guan, Lixin
    MEASUREMENT, 2025, 242
  • [38] Ensemble Methods in Customer Churn Prediction: A Comparative Analysis of the State-of-the-Art
    Bogaert, Matthias
    Delaere, Lex
    MATHEMATICS, 2023, 11 (05)
  • [39] Machine Learning Techniques for Predicting Customer Churn in A Credit Card Company
    Chang, Victor
    Gao, Xianghua
    Hall, Karl
    Uchenna, Emmanuel
    2022 INTERNATIONAL CONFERENCE ON INDUSTRIAL IOT, BIG DATA AND SUPPLY CHAIN, IIOTBDSC, 2022, : 199 - 207
  • [40] Optimization of an Analysis Method for Diabetes Prediction Using Classical and Ensemble Machine Learning Techniques
    Naranjo, Edison
    Arguero, Berenice
    Hurtado, Remigio
    PROCEEDINGS OF NINTH INTERNATIONAL CONGRESS ON INFORMATION AND COMMUNICATION TECHNOLOGY, ICICT 2024, VOL 3, 2024, 1013 : 527 - 536