Hybrid EEG-fNIRS Asynchronous Brain-Computer Interface for Multiple Motor Tasks

被引:127
作者
Buccino, Alessio Paolo [1 ,2 ]
Keles, Hasan Onur [1 ]
Omurtag, Ahmet [1 ]
机构
[1] Univ Houston, Dept Biomed Engn, Houston, TX 77030 USA
[2] Politecn Milan, Dept Elect Informat & Bioengn, I-20133 Milan, Italy
来源
PLOS ONE | 2016年 / 11卷 / 01期
基金
美国国家科学基金会;
关键词
NEAR-INFRARED SPECTROSCOPY; SINGLE-TRIAL CLASSIFICATION; COMMON SPATIAL-PATTERNS; IMAGERY; (DE)SYNCHRONIZATION; IMAGINATION; SIGNALS; FILTERS; FMRI;
D O I
10.1371/journal.pone.0146610
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Non-invasive Brain-Computer Interfaces (BCI) have demonstrated great promise for neu-roprosthetics and assistive devices. Here we aim to investigate methods to combine Electroencephalography (EEG) and functional Near-Infrared Spectroscopy (fNIRS) in an asynchronous Sensory Motor rhythm (SMR)-based BCI. We attempted to classify 4 different executed movements, namely, Right-Arm-Left-Arm-Right-Hand-Left-Hand tasks. Previous studies demonstrated the benefit of EEG-fNIRS combination. However, since normally fNIRS hemodynamic response shows a long delay, we investigated new features, involving slope indicators, in order to immediately detect changes in the signals. Moreover, Common Spatial Patterns (CSPs) have been applied to both EEG and fNIRS signals. 15 healthy subjects took part in the experiments and since 25 trials per class were available, CSPs have been regularized with information from the entire population of participants and optimized using genetic algorithms. The different features have been compared in terms of performance and the dynamic accuracy over trials shows that the introduced methods diminish the fNIRS delay in the detection of changes.
引用
收藏
页数:16
相关论文
共 37 条
[1]  
[Anonymous], COMPUTATIONAL INTELL
[2]  
[Anonymous], 2000, Pattern Classification, DOI DOI 10.1007/978-3-319-57027-3_4
[3]   Optimizing spatial filters for robust EEG single-trial analysis [J].
Blankertz, Benjamin ;
Tomioka, Ryota ;
Lemm, Steven ;
Kawanabe, Motoaki ;
Mueller, Klaus-Robert .
IEEE SIGNAL PROCESSING MAGAZINE, 2008, 25 (01) :41-56
[4]   On the suitability of near-infrared (NIR) systems for next-generation brain-computer interfaces [J].
Coyle, S ;
Ward, T ;
Markham, C ;
McDarby, G .
PHYSIOLOGICAL MEASUREMENT, 2004, 25 (04) :815-822
[5]   Brain-computer interface using a simplified functional near-infrared spectroscopy system [J].
Coyle, Shirley M. ;
Ward, Tomas E. ;
Markham, Charles M. .
JOURNAL OF NEURAL ENGINEERING, 2007, 4 (03) :219-226
[6]   Speeding up classification of multi-channel Brain-Computer Interfaces: Common spatial patterns for slow cortical potentials [J].
Dornhege, G ;
Blankertz, B ;
Curio, G .
1ST INTERNATIONAL IEEE EMBS CONFERENCE ON NEURAL ENGINEERING 2003, CONFERENCE PROCEEDINGS, 2003, :595-598
[7]   Diffuse optics for tissue monitoring and tomography [J].
Durduran, T. ;
Choe, R. ;
Baker, W. B. ;
Yodh, A. G. .
REPORTS ON PROGRESS IN PHYSICS, 2010, 73 (07)
[8]   Enhanced performance by a hybrid NIRS-EEG brain computer interface [J].
Fazli, Siamac ;
Mehnert, Jan ;
Steinbrink, Jens ;
Curio, Gabriel ;
Villringer, Arno ;
Mueller, Klaus-Robert ;
Blankertz, Benjamin .
NEUROIMAGE, 2012, 59 (01) :519-529
[9]   Quantification of the cortical contribution to the NIRS signal over the motor cortex using concurrent NIRS-fMRI measurements [J].
Gagnon, Louis ;
Yuecel, Meryem A. ;
Dehaes, Mathieu ;
Cooper, Robert J. ;
Perdue, Katherine L. ;
Selb, Juliette ;
Huppert, Theodore J. ;
Hoge, Richard D. ;
Boas, David A. .
NEUROIMAGE, 2012, 59 (04) :3933-3940
[10]  
Graimann B, 2010, FRONT COLLECT, P1, DOI 10.1007/978-3-642-02091-9_1