A LOCAL SENSITIVITY AND REGULARITY ANALYSIS FOR THE VLASOV-POISSON-FOKKER-PLANCK SYSTEM WITH MULTI-DIMENSIONAL UNCERTAINTY AND THE SPECTRAL CONVERGENCE OF THE STOCHASTIC GALERKIN METHOD

被引:1
作者
Zhu, Yuhua [1 ]
机构
[1] Univ Wisconsin, Dept Math, Madison, WI 53706 USA
关键词
Uncertainty quantification; Vlasov-Poisson; Fokker-Planck; multiscale; stochastic Galerkin method; uniform regularity; uniform spectral convergence; HIGH-FIELD LIMIT; UNIFORM REGULARITY; KINETIC-EQUATIONS; HYPOCOERCIVITY; APPROXIMATION;
D O I
10.3934/nhm.2019027
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the Vlasov-Poisson-Fokker-Planck (VPFP) system with uncertainty and multiple scales. Here the uncertainty, modeled by multidimensional random variables, enters the system through the initial data, while the multiple scales lead the system to its high-field or parabolic regimes. We obtain a sharp decay rate of the solution to the global Maxwellian, which reveals that the VPFP system is decreasingly sensitive to the initial perturbation as the Knudsen number goes to zero. The sharp regularity estimates in terms of the Knudsen number lead to the stability of the generalized Polynomial Chaos stochastic Galerkin (gPC-SG) method. Based on the smoothness of the solution in the random space and the stability of the numerical method, we conclude the gPC-SG method has spectral accuracy uniform in the Knudsen number.
引用
收藏
页码:677 / 707
页数:31
相关论文
共 22 条
[1]  
[Anonymous], 1970, SINGULAR INTEGRALS D
[2]   Low and high field scaling limits for the Vlasov- and Wigner-Poisson-Fokker-Planck systems [J].
Arnold, A ;
Carrillo, JA ;
Gamba, I ;
Shu, CW .
TRANSPORT THEORY AND STATISTICAL PHYSICS, 2001, 30 (2-3) :121-153
[3]   Galerkin finite element approximations of stochastic elliptic partial differential equations [J].
Babuska, I ;
Tempone, R ;
Zouraris, GE .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2004, 42 (02) :800-825
[4]  
BOUCHUT F, 2000, SERIES APPL MATH, V4
[5]   Stochastic problems in physics and astronomy [J].
Chandrasekhar, S .
REVIEWS OF MODERN PHYSICS, 1943, 15 (01) :0001-0089
[6]   ANALYTIC REGULARITY AND POLYNOMIAL APPROXIMATION OF PARAMETRIC AND STOCHASTIC ELLIPTIC PDE'S [J].
Cohen, Albert ;
Devore, Ronald ;
Schwab, Christoph .
ANALYSIS AND APPLICATIONS, 2011, 9 (01) :11-47
[7]   Convergence Rates of Best N-term Galerkin Approximations for a Class of Elliptic sPDEs [J].
Cohen, Albert ;
DeVore, Ronald ;
Schwab, Christoph .
FOUNDATIONS OF COMPUTATIONAL MATHEMATICS, 2010, 10 (06) :615-646
[8]   A Kinetic Flocking Model with Diffusion [J].
Duan, Renjun ;
Fornasier, Massimo ;
Toscani, Giuseppe .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2010, 300 (01) :95-145
[9]   Multidimensional high-field limit of the electrostatic Vlasov-Poisson-Fokker-Planck system [J].
Goudon, T ;
Nieto, J ;
Poupaud, F ;
Soler, J .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2005, 213 (02) :418-442
[10]  
Hu JW, 2017, SEMA SIMAI SPRING S, V14, P193, DOI 10.1007/978-3-319-67110-9_6