Dynamic patterns make the premotor cortex interested in objects: influence of stimulus and task revealed by fMRI

被引:32
作者
Schubotz, RI [1 ]
von Cramon, DY [1 ]
机构
[1] Max Planck Inst Cognit Neurosci, Dept Neurol, D-04103 Leipzig, Germany
来源
COGNITIVE BRAIN RESEARCH | 2002年 / 14卷 / 03期
关键词
premotor cortex; fMRI; hand-object-interaction; sensorimotor integration;
D O I
10.1016/S0926-6410(02)00138-6
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Research in monkey and man indicates that the ventrolateral premotor cortex (PMv) underlies not only the preparation of manual movements, but also the perceptual representation of pragmatic object properties. However, visual stimuli without any pragmatic meaning were recently found to elicit selective PMv responses if they were subjected to a perceivable pattern of change. We used functional magnetic resonance imaging (fMRI) to investigate if perceptual representations in the PMv might apply not only to pragmatic, but also to dynamic stimulus properties. To this end, a sequential figure matching task that required the processing of dynamic features was contrasted with a non-figure control task (Experiment 1) and an individual figure matching task (Experiment 2). In order to control for potential influences of stimulus properties that might be associated with pragmatic attributes, different types of abstract visual stimuli were employed. The experiments yielded two major findings: if their dynamic properties are attended, then abstract 2D visual figures are sufficient to trigger activation within premotor areas involved in hand-object interaction. Moreover, these premotor activations are independent from stimulus properties that might relate to pragmatic features. The results imply that the PMv is engaged in the processing of stimuli that are usually or actually embedded within either a pragmatic or a dynamic context. (C) 2002 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:357 / 369
页数:13
相关论文
共 73 条
[1]   A fronto-parietal circuit for object manipulation in man: evidence from an fMRI-study [J].
Binkofski, F ;
Buccino, G ;
Posse, S ;
Seitz, RJ ;
Rizzolatti, G ;
Freund, HJ .
EUROPEAN JOURNAL OF NEUROSCIENCE, 1999, 11 (09) :3276-3286
[2]  
Bosch V, 2000, J MAGN RESON IMAGING, V11, P61, DOI 10.1002/(SICI)1522-2586(200001)11:1<61::AID-JMRI9>3.0.CO
[3]  
2-C
[4]   SUPPLEMENTARY MOTOR AREA IN THE MONKEY - ACTIVITY OF NEURONS DURING PERFORMANCE OF A LEARNED MOTOR TASK [J].
BRINKMAN, C ;
PORTER, R .
JOURNAL OF NEUROPHYSIOLOGY, 1979, 42 (03) :681-709
[5]   Action for perception:: A motor-visual attentional effect [J].
Craighero, L ;
Fadiga, L ;
Rizzolatti, G ;
Umiltà, C .
JOURNAL OF EXPERIMENTAL PSYCHOLOGY-HUMAN PERCEPTION AND PERFORMANCE, 1999, 25 (06) :1673-1692
[6]   MAPPING MOTOR REPRESENTATIONS WITH POSITRON EMISSION TOMOGRAPHY [J].
DECETY, J ;
PERANI, D ;
JEANNEROD, M ;
BETTINARDI, V ;
TADARY, B ;
WOODS, R ;
MAZZIOTTA, JC ;
FAZIO, F .
NATURE, 1994, 371 (6498) :600-602
[7]   Cerebral structures participating in motor preparation in humans: A positron emission tomography study [J].
Deiber, MP ;
Ibanez, V ;
Sadato, N ;
Hallett, M .
JOURNAL OF NEUROPHYSIOLOGY, 1996, 75 (01) :233-247
[8]  
DEIBER MP, 1991, EXP BRAIN RES, V84, P393
[9]   Modeling parietal-premotor interactions in primate control of grasping [J].
Fagg, AH ;
Arbib, MA .
NEURAL NETWORKS, 1998, 11 (7-8) :1277-1303
[10]  
Friston K., 1995, HUMAN BRAIN MAPPING, V2, P189, DOI [DOI 10.1002/HBM.460020402, 10.1002/hbm.460020402]