Time-Dependent Billiards

被引:2
作者
Loskutov, Alexander [1 ,2 ]
Leonel, Edson D. [1 ]
机构
[1] Univ Estadual Paulista, Dept Estat Matemat Aplicada & Computacao, BR-13506700 Rio Claro, SP, Brazil
[2] Moscow MV Lomonosov State Univ, Fac Phys, Moscow 119992, Russia
关键词
FERMI ACCELERATION; DISPERSING BILLIARDS; SYSTEMS;
D O I
10.1155/2009/848619
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Dynamical systems of a billiard type are a fundamental notion relevant for the understanding of numerous phenomena observed in statistical mechanics, Hamiltonian dynamics, nonlinear physics, and others. Billiards with time-dependent boundaries represent a natural generalization of mathematical billiards and more adequately reflects the observed physical phenomena. A billiard dynamical system is generated by the free motion of a point mass particle in some region with a piecewise-smooth boundary and the condition of the elastic collision from this boundary. If the boundary in the collision point is smooth, then the billiard ball reflects from it in such a way that the velocity tangent component remains constant, and the normal component changes its sign.
引用
收藏
页数:4
相关论文
共 21 条
  • [1] Birkhoff G., 1927, Dynamical Systems
  • [2] Bunimovich L A., 1974, Funktsional. Anal. i Prilozhen, V8, P73
  • [3] STATISTICAL PROPERTIES OF LORENTZ GAS WITH PERIODIC CONFIGURATION OF SCATTERERS
    BUNIMOVICH, LA
    SINAI, YG
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1981, 78 (04) : 479 - 497
  • [4] Fermi acceleration on the annular billiard
    Departamento de Estatística, Matemática Aplicada e Computação, Instituto de Geociěncias e Ciěncias Exatas, UNESP, Avenida 24A, 1515-Bela Vista, 13506-700, Rio Claro, Sao Paulo, Brazil
    [J]. Phys. Rev. E Stat. Nonlinear Soft Matter Phys., 2006, 6
  • [5] Fermi acceleration on the annular billiard: a simplified version
    de Carvalho, RE
    de Souza, FC
    Leonel, ED
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2006, 39 (14): : 3561 - 3573
  • [6] SPIN DEPENDENCE OF SLOW NEUTRON SCATTERING BY DEUTERONS
    FERMI, E
    MARSHALL, L
    [J]. PHYSICAL REVIEW, 1949, 75 (04): : 578 - 580
  • [7] Fermi acceleration in non-autonomous billiards
    Gelfreich, V.
    Turaev, D.
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2008, 41 (21)
  • [8] Unbounded energy growth in Hamiltonian systems with a slowly varying parameter
    Gelfreich, Vassili
    Turaev, Dmitry
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2008, 283 (03) : 769 - 794
  • [9] Fermi acceleration in the randomized driven Lorentz gas and the Fermi-Ulam model
    Karlis, A. K.
    Papachristou, P. K.
    Diakonos, F. K.
    Constantoudis, V.
    Schmelcher, P.
    [J]. PHYSICAL REVIEW E, 2007, 76 (01):
  • [10] Krylov N. S., 1979, Works on the Foundations of Statistical Physics