In-plane structuring of proton exchange membrane fuel cell cathodes: Effect of ionomer equivalent weight structuring on performance and current density distribution

被引:30
作者
Herden, Susanne [1 ]
Riewald, Felix [1 ]
Hirschfeld, Julian A. [1 ]
Perchthaler, Markus [1 ]
机构
[1] BMW Grp, D-80788 Munich, Germany
关键词
PEM fuel cell; Structured cathode electrode; Ionomer equivalent weight structuring; Current density measurement; Catalyst-coated membrane current distribution; CATALYST LAYERS; RELATIVE-HUMIDITY; TEMPERATURE; ELECTRODES; CONDUCTION; DESIGN; STACK; AREA;
D O I
10.1016/j.jpowsour.2017.04.051
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Within the active area of a fuel cell inhomogeneous operating conditions occur, however, state of the art electrodes are homogenous over the complete active area. This study uses current density distribution measurements to analyze which ionomer equivalent weight (EW) shows locally the highest current densities. With this information a segmented cathode electrode is manufactured by decal transfer. The segmented electrode shows better performance especially at high current densities compared to homogenous electrodes. Furthermore this segmented catalyst coated membrane (CCM) performs optimal in wet as well as dry conditions, both operating conditions arise in automotive fuel cell applications. Thus, cathode electrodes with an optimized ionomer EW distribution might have a significant impact on future automotive fuel cell development. (C) 2017 Elsevier B.V. All rights reserved.
引用
收藏
页码:36 / 43
页数:8
相关论文
共 26 条
[1]   Measurement of current distribution in a proton exchange membrane fuel cell with various flow arrangements - A parametric study [J].
Alaefour, Ibrahim ;
Karimi, G. ;
Jiao, Kui ;
Li, X. .
APPLIED ENERGY, 2012, 93 :80-89
[2]   Influence of Nafion loading in the catalyst layer of gas-diffusion electrodes for PEFC [J].
Antolini, E ;
Giorgi, L ;
Pozio, A ;
Passalacqua, E .
JOURNAL OF POWER SOURCES, 1999, 77 (02) :136-142
[3]   Investigation of a polymer electrolyte membrane fuel cell catalyst layer with bidirectionally-graded composition [J].
Cetinbas, Firat C. ;
Advani, Suresh G. ;
Prasad, Ajay K. .
JOURNAL OF POWER SOURCES, 2014, 270 :594-602
[4]   Electrocatalyst approaches and challenges for automotive fuel cells [J].
Debe, Mark K. .
NATURE, 2012, 486 (7401) :43-51
[5]   Effect of operating conditions on current density distribution and high frequency resistance in a segmented PEM fuel cell [J].
Gerteisen, Dietmar ;
Zamel, Nada ;
Sadeler, Christian ;
Geiger, Florian ;
Ludwig, Victor ;
Hebling, Christopher .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2012, 37 (09) :7736-7744
[6]   Review-Electromobility: Batteries or Fuel Cells? [J].
Groeger, Oliver ;
Gasteiger, Hubert A. ;
Suchsland, Jens-Peter .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2015, 162 (14) :A2605-A2622
[7]   Study by electron microscopy of proton exchange membrane fuel cell membrane-electrode assembly degradation mechanisms: Influence of local conditions [J].
Guetaz, Laure ;
Escribano, Sylvie ;
Sicardy, Olivier .
JOURNAL OF POWER SOURCES, 2012, 212 :169-178
[8]   Current density and catalyst-coated membrane resistance distribution of hydro-formed metallic bipolar plate fuel cell short stack with 250 cm2 active area [J].
Haase, S. ;
Moser, M. ;
Hirschfeld, J. A. ;
Jozwiak, K. .
JOURNAL OF POWER SOURCES, 2016, 301 :251-260
[9]   A novel scheme for precise diagnostics and effective stabilization of currents in a fuel cell stack [J].
Hirschfeld, J. A. ;
Lustfeld, H. ;
Reissel, M. ;
Steffen, B. .
INTERNATIONAL JOURNAL OF ENERGY RESEARCH, 2010, 34 (03) :293-302
[10]   Feasibility of in-plane GDL structuration: Impact on current density distribution in large-area Proton Exchange Membrane Fuel Cells [J].
Jabbour, Lara ;
Robin, Christophe ;
Nandjou, Fredy ;
Vincent, Remi ;
Micoud, Fabrice ;
Poirot-Crouvezier, Jean-Philippe ;
d'Arbigny, Julien ;
Gerard, Mathias .
JOURNAL OF POWER SOURCES, 2015, 299 :380-390