Vox2Surf: Implicit Surface Reconstruction from Volumetric Data

被引:3
作者
Hong, Yoonmi
Ahmad, Sahar
Wu, Ye
Liu, Siyuan
Yap, Pew-Thian [1 ]
机构
[1] Univ N Carolina, Dept Radiol, Chapel Hill, NC 27515 USA
来源
MACHINE LEARNING IN MEDICAL IMAGING, MLMI 2021 | 2021年 / 12966卷
基金
美国国家卫生研究院;
关键词
Cortical surface reconstruction; Implicit representation; Deep learning;
D O I
10.1007/978-3-030-87589-3_66
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Surface reconstruction from volumetric T1-weighted and T2-weighted images is a time-consuming multi-step process that often involves careful parameter fine-tuning, hindering a more wide-spread utilization of surface-based analysis particularly in large-scale studies. In this work, we propose a fast surface reconstruction method that is based on directly learning a continuous-valued signed distance function (SDF) as implicit surface representation. This continuous representation implicitly encodes the boundary of the surface as the zero isosurface. Given the predicted SDF, the target 3D surface is reconstructed by applying the marching cubes algorithm. Our implicit reconstruction method concurrently predicts the surfaces of the brain parenchyma, the white matter and pial surfaces, the subcortical structures, and the ventricles. Evaluation based on data from the Human Connectome Project indicates that surface reconstruction of a total of 22 cortical and subcortical structures can be completed in less than 20 min.
引用
收藏
页码:644 / 653
页数:10
相关论文
共 26 条
  • [1] Modeling Facial Geometry using Compositional VAEs
    Bagautdinov, Timur
    Wu, Chenglei
    Saragih, Jason
    Fua, Pascal
    Sheikh, Yaser
    [J]. 2018 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2018, : 3877 - 3886
  • [2] Topology correction of segmented medical images using a fast marching algorith
    Bazin, Pierre-Louis
    Pham, Dzunq L.
    [J]. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2007, 88 (02) : 182 - 190
  • [3] Ben-Hamu H, 2018, SIGGRAPH ASIA'18: SIGGRAPH ASIA 2018 TECHNICAL PAPERS, DOI 10.1145/3272127.3275052
  • [4] Learning Implicit Fields for Generative Shape Modeling
    Chen, Zhiqin
    Zhang, Hao
    [J]. 2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019), 2019, : 5932 - 5941
  • [5] 3D-R2N2: A Unified Approach for Single and Multi-view 3D Object Reconstruction
    Choy, Christopher B.
    Xu, Danfei
    Gwak, Jun Young
    Chen, Kevin
    Savarese, Silvio
    [J]. COMPUTER VISION - ECCV 2016, PT VIII, 2016, 9912 : 628 - 644
  • [6] Desbrun M, 1999, COMP GRAPH, P317, DOI 10.1145/311535.311576
  • [7] DUBUISSON MP, 1994, INT C PATT RECOG, P566, DOI 10.1109/ICPR.1994.576361
  • [8] FreeSurfer
    Fischl, Bruce
    [J]. NEUROIMAGE, 2012, 62 (02) : 774 - 781
  • [9] The minimal preprocessing pipelines for the Human Connectome Project
    Glasser, Matthew F.
    Sotiropoulos, Stamatios N.
    Wilson, J. Anthony
    Coalson, Timothy S.
    Fischl, Bruce
    Andersson, Jesper L.
    Xu, Junqian
    Jbabdi, Saad
    Webster, Matthew
    Polimeni, Jonathan R.
    Van Essen, David C.
    Jenkinson, Mark
    [J]. NEUROIMAGE, 2013, 80 : 105 - 124
  • [10] FSL
    Jenkinson, Mark
    Beckmann, Christian F.
    Behrens, Timothy Ej.
    Woolrich, Mark W.
    Smith, Stephen M.
    [J]. NEUROIMAGE, 2012, 62 (02) : 782 - 790