Inexact Newton-Kantorovich Methods for Constrained Nonlinear Model Predictive Control

被引:7
作者
Dontchev, Asen L. [1 ,2 ]
Huang, Mike [3 ]
Kolmanovsky, Ilya V. [4 ]
Nicotra, Marco M. [4 ]
机构
[1] Amer Math Soc, Providence, RI 02904 USA
[2] Univ Michigan, Ann Arbor, MI 48109 USA
[3] Toyota Motor North Amer, Res & Dev, Ann Arbor, MI 48105 USA
[4] Univ Michigan, Dept Aerosp Engn, Ann Arbor, MI 48109 USA
基金
奥地利科学基金会; 美国国家科学基金会; 澳大利亚研究理事会;
关键词
Constrained systems; control engineering computing; inexact Newton-Kantorovich method; linear convergence; Newton method; nonlinear dynamical systems; nonlinear model predictive control; optimal control; quadratic programming; strong regularity; TIME ITERATION SCHEME; OPTIMIZATION; STABILITY;
D O I
10.1109/TAC.2018.2884402
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, we consider Newton-Kantorovich type methods for solving control-constrained optimal control problems that appear in model predictive control. Conditions for convergence are established for an inexact version of the Newton-Kantorovich method applied to variational inequalities. Based on these results, two groups of algorithms are proposed to solve the optimality system. The first group includes exact and inexact Newton and Newton-Kantorovich implementations of the sequential quadratic programming. In the second group, exact and inexact Newton and Newton-Kantorovich methods are developed for solving a nonsmooth normal map equation equivalent to the optimality system. Numerical simulations featuring examples from the aerospace and automotive domain are presented, which show that inexact Newton-Kantorovich type methods can achieve significant reduction of the computational time.
引用
收藏
页码:3602 / 3615
页数:14
相关论文
共 50 条
  • [21] Nonlinear model predictive control of a swelling constrained industrial batch reactor
    Simon, Levente L.
    Nagy, Z. K.
    Hungerbuehler, Konrad
    18TH EUROPEAN SYMPOSIUM ON COMPUTER AIDED PROCESS ENGINEERING, 2008, 25 : 525 - 530
  • [22] Nonlinear model predictive control of a magnetic levitation system
    Baechle, Thomas
    Hentzelt, Sebastian
    Graichen, Knut
    CONTROL ENGINEERING PRACTICE, 2013, 21 (09) : 1250 - 1258
  • [23] Numerical solution of control-state constrained optimal control problems with an inexact smoothing Newton method
    Chen, Jinhai
    Gerdts, Matthias
    IMA JOURNAL OF NUMERICAL ANALYSIS, 2011, 31 (04) : 1598 - 1624
  • [24] Output-feedback stochastic model predictive control of chance-constrained nonlinear systems
    Zhang, Jingyu
    Ohtsuka, Toshiyuki
    IET CONTROL THEORY AND APPLICATIONS, 2023, 17 (10) : 1283 - 1294
  • [25] Semismooth and smoothing Newton methods for nonlinear systems with complementarity constraints: Adaptivity and inexact resolution
    Ben Gharbia, Ibtihel
    Ferzly, Joelle
    Vohralik, Martin
    Yousef, Soleiman
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2023, 420
  • [26] Periodic optimal control of nonlinear constrained systems using economic model predictive control
    Koehler, Johannes
    Mueller, Matthias A.
    Allgoewer, Frank
    JOURNAL OF PROCESS CONTROL, 2020, 92 : 185 - 201
  • [27] A perspective on nonlinear model predictive control
    Biegler, Lorenz Theodor
    KOREAN JOURNAL OF CHEMICAL ENGINEERING, 2021, 38 (07) : 1317 - 1332
  • [28] A path-following inexact Newton method for PDE-constrained optimal control in BV
    D. Hafemeyer
    F. Mannel
    Computational Optimization and Applications, 2022, 82 : 753 - 794
  • [29] Model Predictive Path-Following for Constrained Nonlinear Systems
    Faulwasser, T.
    Kern, B.
    Findeisen, R.
    PROCEEDINGS OF THE 48TH IEEE CONFERENCE ON DECISION AND CONTROL, 2009 HELD JOINTLY WITH THE 2009 28TH CHINESE CONTROL CONFERENCE (CDC/CCC 2009), 2009, : 8642 - 8647
  • [30] Distributed model predictive control for constrained nonlinear systems with decoupled local dynamics
    Zhao, Meng
    Ding, Baocang
    ISA TRANSACTIONS, 2015, 55 : 1 - 12