Inexact Newton-Kantorovich Methods for Constrained Nonlinear Model Predictive Control

被引:7
|
作者
Dontchev, Asen L. [1 ,2 ]
Huang, Mike [3 ]
Kolmanovsky, Ilya V. [4 ]
Nicotra, Marco M. [4 ]
机构
[1] Amer Math Soc, Providence, RI 02904 USA
[2] Univ Michigan, Ann Arbor, MI 48109 USA
[3] Toyota Motor North Amer, Res & Dev, Ann Arbor, MI 48105 USA
[4] Univ Michigan, Dept Aerosp Engn, Ann Arbor, MI 48109 USA
基金
奥地利科学基金会; 美国国家科学基金会; 澳大利亚研究理事会;
关键词
Constrained systems; control engineering computing; inexact Newton-Kantorovich method; linear convergence; Newton method; nonlinear dynamical systems; nonlinear model predictive control; optimal control; quadratic programming; strong regularity; TIME ITERATION SCHEME; OPTIMIZATION; STABILITY;
D O I
10.1109/TAC.2018.2884402
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, we consider Newton-Kantorovich type methods for solving control-constrained optimal control problems that appear in model predictive control. Conditions for convergence are established for an inexact version of the Newton-Kantorovich method applied to variational inequalities. Based on these results, two groups of algorithms are proposed to solve the optimality system. The first group includes exact and inexact Newton and Newton-Kantorovich implementations of the sequential quadratic programming. In the second group, exact and inexact Newton and Newton-Kantorovich methods are developed for solving a nonsmooth normal map equation equivalent to the optimality system. Numerical simulations featuring examples from the aerospace and automotive domain are presented, which show that inexact Newton-Kantorovich type methods can achieve significant reduction of the computational time.
引用
收藏
页码:3602 / 3615
页数:14
相关论文
共 50 条
  • [1] Self-Organizing Model Predictive Control for Constrained Nonlinear Systems
    Han, Hong-Gui
    Wang, Yan
    Sun, Hao-Yuan
    Liu, Zheng
    Qiao, Jun-Fei
    IEEE TRANSACTIONS ON SYSTEMS MAN CYBERNETICS-SYSTEMS, 2025, 55 (01): : 501 - 512
  • [2] A parallel Newton-type method for nonlinear model predictive control
    Deng, Haoyang
    Ohtsuka, Toshiyuki
    AUTOMATICA, 2019, 109
  • [3] A New Lagrange-Newton-Krylov Solver for PDE-constrained Nonlinear Model Predictive Control
    Christiansen, Lasse Hjuler
    Jorgensen, John Bagterp
    IFAC PAPERSONLINE, 2018, 51 (20): : 325 - 330
  • [4] A Highly Parallelizable Newton-type Method for Nonlinear Model Predictive Control
    Deng, Haoyang
    Ohtsuka, Toshiyuki
    IFAC PAPERSONLINE, 2018, 51 (20): : 349 - 355
  • [5] Distributed Model predictive control of constrained weakly coupled nonlinear systems
    Liu, Xiaotao
    Shi, Yang
    Constantinescu, Daniela
    SYSTEMS & CONTROL LETTERS, 2014, 74 : 41 - 49
  • [6] Adaptive model predictive control for constrained nonlinear systems
    Adetol, Veronica
    DeHaan, Darryl
    Guay, Martin
    SYSTEMS & CONTROL LETTERS, 2009, 58 (05) : 320 - 326
  • [7] Constructive model predictive control for constrained nonlinear systems
    He, De-Feng
    Ji, Hai-Bo
    OPTIMAL CONTROL APPLICATIONS & METHODS, 2008, 29 (06) : 467 - 481
  • [8] An inexact Newton-like conditional gradient method for constrained nonlinear systems
    Goncalves, M. L. N.
    Oliveira, F. R.
    APPLIED NUMERICAL MATHEMATICS, 2018, 132 : 22 - 34
  • [9] A path-following inexact Newton method for PDE-constrained optimal control in BV
    Hafemeyer, D.
    Mannel, F.
    COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2022, 82 (03) : 753 - 794
  • [10] Quasi-LPV Model Predictive Reconfigurable Control for Constrained Nonlinear Systems
    Ben Hamouda, Lamia
    Bennouna, Ouadie
    Ayadi, Mounir
    Langlois, Nicolas
    2013 2ND INTERNATIONAL CONFERENCE ON CONTROL AND FAULT-TOLERANT SYSTEMS (SYSTOL), 2013, : 590 - 595