How Well Can Persistent Contrails Be Predicted?

被引:63
作者
Gierens, Klaus [1 ]
Matthes, Sigrun [1 ]
Rohs, Susanne [2 ]
机构
[1] Inst Phys Atmosphare, Deutsch Zentrum Luft & Raumfahrt, D-82234 Oberpfaffenhofen, Germany
[2] Forschungszentrum Julich, IEK 8, D-52425 Julich, Germany
基金
欧盟地平线“2020”;
关键词
contrails; climate; mitigation; predictability; LOWER STRATOSPHERE; AIRCRAFT; CLIMATE; SEASONALITY; RETRIEVAL; HUMIDITY; CYCLE;
D O I
10.3390/aerospace7120169
中图分类号
V [航空、航天];
学科分类号
08 ; 0825 ;
摘要
Persistent contrails and contrail cirrus are responsible for a large part of aviation induced radiative forcing. A considerable fraction of their warming effect could be eliminated by diverting only a quite small fraction of flight paths, namely those that produce the highest individual radiative forcing (iRF). In order to make this a viable mitigation strategy it is necessary that aviation weather forecast is able to predict (i) when and where contrails are formed, (ii) which of these are persistent, and (iii) how large the iRF of those contrails would be. Here we study several data bases together with weather data in order to see whether such a forecast would currently be possible. It turns out that the formation of contrails can be predicted with some success, but there are problems to predict contrail persistence. The underlying reason for this is that while the temperature field is quite good in weather prediction and climate simulations with specified dynamics, this is not so for the relative humidity in general and for ice supersaturation in particular. However we find that the weather model shows the dynamical peculiarities that are expected for ice supersaturated regions where strong contrails are indeed found in satellite data. This justifies some hope that the prediction of strong contrails may be possible via general regression involving the dynamical state of the ambient atmosphere.
引用
收藏
页码:1 / 18
页数:18
相关论文
共 36 条
[1]   Reducing global warming by airline contrail avoidance: A case study of annual benefits for the contiguous United States [J].
Avila, Denis ;
Sherry, Lance ;
Thompson, Terry .
TRANSPORTATION RESEARCH INTERDISCIPLINARY PERSPECTIVES, 2019, 2
[2]   Civil Aircraft for the regular investigation of the atmosphere based on an instrumented container: The new CARIBIC system [J].
Brenninkmeijer, C. A. M. ;
Crutzen, P. ;
Boumard, F. ;
Dauer, T. ;
Dix, B. ;
Ebinghaus, R. ;
Filippi, D. ;
Fischer, H. ;
Franke, H. ;
Friess, U. ;
Heintzenberg, J. ;
Helleis, F. ;
Hermann, M. ;
Kock, H. H. ;
Koeppel, C. ;
Lelieveld, J. ;
Leuenberger, M. ;
Martinsson, B. G. ;
Miemczyk, S. ;
Moret, H. P. ;
Nguyen, H. N. ;
Nyfeler, P. ;
Oram, D. ;
O'Sullivan, D. ;
Penkett, S. ;
Platt, U. ;
Pupek, M. ;
Ramonet, M. ;
Randa, B. ;
Reichelt, M. ;
Rhee, T. S. ;
Rohwer, J. ;
Rosenfeld, K. ;
Scharffe, D. ;
Schlager, H. ;
Schumann, U. ;
Slemr, F. ;
Sprung, D. ;
Stock, P. ;
Thaler, R. ;
Valentino, F. ;
van Velthoven, P. ;
Waibel, A. ;
Wandel, A. ;
Waschitschek, K. ;
Wiedensohler, A. ;
Xueref-Remy, I. ;
Zahn, A. ;
Zech, U. ;
Ziereis, H. .
ATMOSPHERIC CHEMISTRY AND PHYSICS, 2007, 7 (18) :4953-4976
[3]   Comparison of ECMWF analysis and forecast humidity data with CARIBIC upper troposphere and lower stratosphere observations [J].
Dyroff, Christoph ;
Zahn, Andreas ;
Christner, Emanuel ;
Forbes, Richard ;
Tompkins, Adrian M. ;
van Velthoven, Peter F. J. .
QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY, 2015, 141 (688) :833-844
[4]   A PARAMETERIZATION OF ICE-CLOUD OPTICAL-PROPERTIES FOR CLIMATE MODELS [J].
EBERT, EE ;
CURRY, JA .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 1992, 97 (D4) :3831-3836
[5]   A distribution law for relative humidity in the upper troposphere and lower stratosphere derived from three years of MOZAIC measurements [J].
Gierens, K ;
Schumann, U ;
Helten, M ;
Smit, H ;
Marenco, A .
ANNALES GEOPHYSICAE-ATMOSPHERES HYDROSPHERES AND SPACE SCIENCES, 1999, 17 (09) :1218-1226
[6]  
Gierens K., 2012, Atmospheric Physics: Background - Methods - Trends, Research Topics in Aerospace, P135, DOI DOI 10.1007/978-3-642-30183-4_9
[7]   Statistical analysis of contrail lifetimes from a satellite perspective [J].
Gierens, Klaus ;
Vazquez-Navarro, Margarita .
METEOROLOGISCHE ZEITSCHRIFT, 2018, 27 (03) :183-193
[8]  
Grewe V, 2017, AEROSPACE-BASEL, V4, DOI 10.3390/aerospace4030034
[9]  
Hersbach H., ERA5 HOURLY DATA PRE
[10]   NORTH-ATLANTIC AIR-TRAFFIC WITHIN THE LOWER STRATOSPHERE - CRUISING TIMES AND CORRESPONDING EMISSIONS [J].
HOINKA, KP ;
REINHARDT, ME ;
METZ, W .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 1993, 98 (D12) :23113-23131