Existence and energy decay of solution to a nonlinear viscoelastic two-dimensional beam with a delay

被引:6
作者
Lekdim, Billal [1 ,2 ]
Khemmoudj, Ammar [2 ]
机构
[1] Univ Ziane Achour Djelfa, Dept Math, Djelfa 17000, Algeria
[2] Univ Sci & Technol Houari Boumediene, Fac Math, Lab SDG, POB 32, Algiers 16111, Algeria
关键词
Viscoelastic damping; Distributed delay term; Nonlinear tension; Exponential decay; Lyapunov method;
D O I
10.1007/s11045-021-00766-z
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
A longitudinal and transversal vibrations of the beam with nonlinear tension, a viscoelastic damping and distributed delay term is studied. Using the Faedo-Galerkin method, the well-posedness of the problem is established. A uniform decay result is proved by multiplier method.
引用
收藏
页码:915 / 931
页数:17
相关论文
共 35 条
[1]  
Aili M., 2019, REND CIRC MAT PALERM, V2, P1
[2]   Decay estimates for second order evolution equations with memory [J].
Alabau-Boussouira, Fatiha ;
Cannarsa, Piermarco ;
Sforza, Daniela .
JOURNAL OF FUNCTIONAL ANALYSIS, 2008, 254 (05) :1342-1372
[3]  
Apalara TA, 2014, ELECTRON J DIFFER EQ
[4]  
AUBIN JP, 1963, CR HEBD ACAD SCI, V256, P5042
[5]  
Benaissa A, 2014, INT J DYN SYST DIFFE, V5, P1
[6]  
Bland D. R., 2016, The Theory of Linear Viscoelasticity
[7]   FOUNDATIONS OF LINEAR VISCOELASTICITY [J].
COLEMAN, BD ;
NOLL, W .
REVIEWS OF MODERN PHYSICS, 1961, 33 (02) :239-249
[8]   Global existence and exponential decay of the solution for a viscoelastic wave equation with a delay [J].
Dai, Qiuyi ;
Yang, Zhifeng .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2014, 65 (05) :885-903
[9]   Boundary control of transverse motion of marine risers with actuator dynamics [J].
Do, K. D. ;
Pan, J. .
JOURNAL OF SOUND AND VIBRATION, 2008, 318 (4-5) :768-791
[10]  
Feng, 2016, Z ANGEW MATH PHYS, V1, P1