Style Normalization and Restitution for Generalizable Person Re-identification

被引:322
作者
Jin, Xin [1 ,2 ]
Lan, Cuiling [2 ]
Zeng, Wenjun [2 ]
Chen, Zhibo [1 ]
Zhang, Li [3 ]
机构
[1] Univ Sci & Technol China, Hefei, Anhui, Peoples R China
[2] Microsoft Res Asia, Beijing, Peoples R China
[3] Univ Oxford, Oxford, England
来源
2020 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR) | 2020年
关键词
D O I
10.1109/CVPR42600.2020.00321
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Existing fully-supervised person re-identification (ReID) methods usually suffer from poor generalization capability caused by domain gaps. The key to solving this problem lies in filtering out identity-irrelevant interference and learning domain-invariant person representations. In this paper, we aim to design a generalizable person ReID framework which trains a model on source domains yet is able to generalize/perform well on target domains. To achieve this goal, we propose a simple yet effective Style Normalization and Restitution (SNR) module. Specifically, we filter out style variations (e.g., illumination, color contrast) by Instance Normalization (IN). However, such a process inevitably removes discriminative information. We propose to distill identity-relevant feature from the removed information and restitute it to the network to ensure high discrimination. For better disentanglement, we enforce a dual causality loss constraint in SNR to encourage the separation of identity-relevant features and identity-irrelevant features. Extensive experiments demonstrate the strong generalization capability of our framework. Our models empowered by the SNR modules significantly outperform the state-of-the-art domain generalization approaches on multiple widely-used person ReID benchmarks, and also show superiority on unsupervised domain adaptation.
引用
收藏
页码:3140 / 3149
页数:10
相关论文
共 61 条
[1]  
[Anonymous], 2018, ECCV
[2]  
[Anonymous], 2018, ARXIV180711334
[3]  
[Anonymous], 2018, ARXIV180105339
[4]  
[Anonymous], INT J COMPUTER VISIO
[5]  
[Anonymous], 2017, A learned representation for artistic style
[6]  
Ba J. L., 2016, J. Mach. Learn. Res.
[7]   Image-Image Domain Adaptation with Preserved Self-Similarity and Domain-Dissimilarity for Person Re-identification [J].
Deng, Weijian ;
Zheng, Liang ;
Ye, Qixiang ;
Kang, Guoliang ;
Yang, Yi ;
Jiao, Jianbin .
2018 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2018, :994-1003
[8]   Unsupervised Person Re-identification: Clustering and Fine-tuning [J].
Fan, Hehe ;
Zheng, Liang ;
Yan, Chenggang ;
Yang, Yi .
ACM TRANSACTIONS ON MULTIMEDIA COMPUTING COMMUNICATIONS AND APPLICATIONS, 2018, 14 (04)
[9]  
Fu Y., 2019, P ASS ADV ART INT
[10]   Self-similarity Grouping: A Simple Unsupervised Cross Domain Adaptation Approach for Person Re-identification [J].
Fu, Yang ;
Wei, Yunchao ;
Wang, Guanshuo ;
Zhou, Yuqian ;
Shi, Honghui ;
Huang, Thomas S. .
2019 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2019), 2019, :6111-6120