Completing symplectic matrices

被引:1
作者
Spiegel, E [1 ]
机构
[1] Univ Connecticut, Dept Math, Storrs, CT 06269 USA
关键词
hyperbolic plane; symplectic group; Witt's theorem;
D O I
10.1016/S0024-3795(00)00081-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let F be a field of characteristic not equal 2, V a non-singular 2n-dimensional symplectic space over F, nu(1), nu(2),..., nu(2n) a basis for V, and Sp(n)(F) the collection of symplectic isometries of V with respect to this basis. We consider the following completion question: If A is any n x n F-matrix, must there be some D is an element of Sp(2n) (F) with D = (A * ) * *) It is shown that for some particular important choices of bases, the answer is yes, but it does not hold in general. (C) 2000 Elsevier Science Inc. All rights reserved.
引用
收藏
页码:93 / 100
页数:8
相关论文
共 3 条
  • [1] BOURBAKI N, 1962, ACTUAL SCI IND, V1236
  • [2] DIEUDONNE J, 1963, GEOMETRIE GROUPES CL
  • [3] JOHNSON C. R., 1990, P S APPL MATH, V40, P171, DOI DOI 10.1090/PSAPM