Joint Bayesian Endmember Extraction and Linear Unmixing for Hyperspectral Imagery

被引:292
作者
Dobigeon, Nicolas [1 ]
Moussaoui, Said [2 ]
Coulon, Martial [3 ]
Tourneret, Jean-Yves [3 ]
Hero, Alfred O. [1 ]
机构
[1] Univ Michigan, Dept EECS, Ann Arbor, MI 48109 USA
[2] ECN, CNRS, UMR 6597, IRCCyN, F-44321 Nantes 3, France
[3] Univ Toulouse, IRIT INP ENSEEIHT, F-31071 Toulouse 7, France
关键词
Bayesian inference; endmember extraction; hyperspectral imagery; linear spectral unmixing; MCMC methods; MATRIX FACTORIZATION; COMPONENT ANALYSIS; SEPARATION; MODEL; MCMC; ALGORITHMS; SPECTRA; QUALITY;
D O I
10.1109/TSP.2009.2025797
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper studies a fully Bayesian algorithm for endmember extraction and abundance estimation for hyperspectral imagery. Each pixel of the hyperspectral image is decomposed as a linear combination of pure endmember spectra following the linear mixing model. The estimation of the unknown endmember spectra is conducted in a unified manner by generating the posterior distribution of abundances and endmember parameters under a hierarchical Bayesian model. This model assumes conjugate prior distributions for these parameters, accounts for nonnegativity and full-additivity constraints, and exploits the fact that the endmember proportions lie on a lower dimensional simplex. A Gibbs sampler is proposed to overcome the complexity of evaluating the resulting posterior distribution. This sampler generates samples distributed according to the posterior distribution and estimates the unknown parameters using these generated samples. The accuracy of the joint Bayesian estimator is illustrated by simulations conducted on synthetic and real AVIRIS images.
引用
收藏
页码:4355 / 4368
页数:14
相关论文
共 60 条
  • [31] BIDIRECTIONAL REFLECTANCE SPECTROSCOPY .1. THEORY
    HAPKE, B
    [J]. JOURNAL OF GEOPHYSICAL RESEARCH, 1981, 86 (NB4): : 3039 - 3054
  • [32] Fully constrained least squares linear spectral mixture analysis method for material quantification in hyperspectral imagery
    Heinz, DC
    Chang, CI
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2001, 39 (03): : 529 - 545
  • [33] Jeffreys H., 1961, THEORY PROBABILITY
  • [34] A SEMIEMPIRICAL METHOD FOR ANALYSIS OF THE REFLECTANCE SPECTRA OF BINARY MINERAL MIXTURES
    JOHNSON, PE
    SMITH, MO
    TAYLORGEORGE, S
    ADAMS, JB
    [J]. JOURNAL OF GEOPHYSICAL RESEARCH, 1983, 88 (NB4): : 3557 - 3561
  • [35] Kay S. M., 1993, Fundamentals of Statistical Signal Processing: Estimation Theory
  • [36] Spectral unmixing
    Keshava, N
    Mustard, JF
    [J]. IEEE SIGNAL PROCESSING MAGAZINE, 2002, 19 (01) : 44 - 57
  • [37] An algorithm taxonomy for hyperspectral unmixing
    Keshava, N
    Kerekes, J
    Manolakis, D
    Shaw, G
    [J]. ALGORITHMS FOR MULTISPECTRAL, HYPERSPECTRAL, AND ULTRASPECTRAL IMAGERY VI, 2000, 4049 : 42 - 63
  • [38] Wavelet-based feature extraction for improved endmember abundance estimation in linear unmixing of hyperspectral signals
    Li, J
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2004, 42 (03): : 644 - 649
  • [39] Hyperspectral subpixel target detection using the linear mixing model
    Manolakis, D
    Siracusa, C
    Shaw, G
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2001, 39 (07): : 1392 - 1409
  • [40] Martins Fabiola C. O., 2006, Neotropical Biology and Conservation, V1, P101