Writing Memories with Light-Addressable Reinforcement Circuitry

被引:344
作者
Claridge-Chang, Adam [1 ]
Roorda, Robert D. [1 ]
Vrontou, Eleftheria [1 ]
Sjulson, Lucas [1 ]
Li, Haiyan [2 ]
Hirsh, Jay [2 ]
Miesenboeck, Gero [1 ]
机构
[1] Univ Oxford, Dept Physiol Anat & Genet, Oxford OX1 3PT, England
[2] Univ Virginia, Dept Biol, Charlottesville, VA 22903 USA
基金
美国国家卫生研究院; 英国医学研究理事会;
关键词
MUSHROOM BODY NEURONS; DROSOPHILA-MELANOGASTER; ADENYLATE-CYCLASE; OLFACTORY MEMORY; REMOTE-CONTROL; TERM-MEMORY; PREDICTION; OPERANT; PHOTOSTIMULATION; LOCALIZATION;
D O I
10.1016/j.cell.2009.08.034
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Dopaminergic neurons are thought to drive learning by signaling changes in the expectations of salient events, such as rewards or punishments. Olfactory conditioning in Drosophila requires direct dopamine action on intrinsic mushroom body neurons, the likely storage sites of olfactory memories. Neither the cellular sources of the conditioning dopamine nor its precise postsynaptic targets are known. By optically controlling genetically circumscribed subsets of dopaminergic neurons in the behaving fly, we have mapped the origin of aversive reinforcement signals to the PPL1 cluster of 12 dopaminergic cells. PPL1 projections target restricted domains in the vertical lobes and heel of the mushroom body. Artificially evoked activity in a small number of identifiable cells thus suffices for programming behaviorally meaningful memories. The delineation of core reinforcement circuitry is an essential first step in dissecting the neural mechanisms that compute and represent valuations, store associations, and guide actions.
引用
收藏
页码:405 / 415
页数:11
相关论文
共 53 条
  • [1] ABRAMS TW, 1991, J NEUROSCI, V11, P2655
  • [2] Roles for Drosophila mushroom body neurons in olfactory learning and memory
    Akalal, David-Benjamin G.
    Wilson, Curtis F.
    Zong, Lin
    Tanaka, Nobuaki K.
    Ito, Kei
    Davis, Ronald L.
    [J]. LEARNING & MEMORY, 2006, 13 (05) : 659 - 668
  • [3] Altered electrical properties in Drosophila neurons developing without synaptic transmission
    Baines, RA
    Uhler, JP
    Thompson, A
    Sweeney, ST
    Bate, M
    [J]. JOURNAL OF NEUROSCIENCE, 2001, 21 (05) : 1523 - 1531
  • [4] Berg HC., 2004, E COLI MOTION
  • [5] Operant reward learning in Aplysia:: Neuronal correlates and mechanisms
    Brembs, B
    Lorenzetti, FD
    Reyes, FD
    Baxter, DA
    Byrne, JH
    [J]. SCIENCE, 2002, 296 (5573) : 1706 - 1709
  • [6] The operant and the classical in conditioned orientation of Drosophila melanogaster at the flight simulator
    Brembs, B
    Heisenberg, M
    [J]. LEARNING & MEMORY, 2000, 7 (02) : 104 - 115
  • [7] Double dissociation of PKC and AC manipulations on operant and classical learning in Drosophila
    Brembs, Bjoern
    Plendl, Wolfgang
    [J]. CURRENT BIOLOGY, 2008, 18 (15) : 1168 - 1171
  • [8] CATECHOLAMINE-CONTAINING NEURONS IN DROSOPHILA-MELANOGASTER - DISTRIBUTION AND DEVELOPMENT
    BUDNIK, V
    WHITE, K
    [J]. JOURNAL OF COMPARATIVE NEUROLOGY, 1988, 268 (03) : 400 - 413
  • [9] Connolly J.B., 1998, Drosophila, P265
  • [10] Collective cognition in animal groups
    Couzin, Iain D.
    [J]. TRENDS IN COGNITIVE SCIENCES, 2009, 13 (01) : 36 - 43