Existence and uniqueness of solutions for Choquard equation involving Hardy-Littlewood-Sobolev critical exponent

被引:58
作者
Guo, Lun [1 ,2 ]
Hu, Tingxi [3 ]
Peng, Shuangjie [1 ,2 ]
Shuai, Wei [1 ,2 ,4 ]
机构
[1] Cent China Normal Univ, Sch Math & Stat, Wuhan 430079, Hubei, Peoples R China
[2] Cent China Normal Univ, Hubei Key Lab Math Sci, Wuhan 430079, Hubei, Peoples R China
[3] Southwest Univ, Sch Math & Stat, Chongqing 400715, Peoples R China
[4] Chinese Univ Hong Kong, Inst Math Sci, Shatin, Hong Kong, Peoples R China
基金
中国博士后科学基金;
关键词
ASYMPTOTIC SYMMETRY; NODAL SOLUTIONS; CLASSIFICATION; THEOREMS;
D O I
10.1007/s00526-019-1585-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we first prove that each positive solution of is radially symmetric, monotone decreasing about some point and has the form where 0 < a < N if N = 3 or 4, and N - 4 = a < N if N = 5, 2 * a := N+ a N- 2 is the upper Hardy- Littlewood- Sobolev critical exponent, t > 0 is a constant and ca > 0 depends only on a and N. Based on this uniqueness result, we then study the following nonlinear Choquard equation By using Lions' Concentration- Compactness Principle, we obtain a global compactness result, i. e. wegive a complete description for the Palais- Smale sequences of the corresponding energy functional. Adopting this description, we are succeed in proving the existence of at least one positive solution if V( x) L N2 is suitable small. This result generalizes the result for semilinear Schrodinger equation by Benci and Cerami ( J Funct Anal 88: 90- 117, 1990) to Choquard equation.
引用
收藏
页数:34
相关论文
共 40 条
[31]   Groundstates of nonlinear Choquard equations: Hardy-Littlewood-Sobolev critical exponent [J].
Moroz, Vitaly ;
Van Schaftingen, Jean .
COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2015, 17 (05)
[32]   Groundstates of nonlinear Choquard equations: Existence, qualitative properties and decay asymptotics [J].
Moroz, Vitaly ;
Van Schaftingen, Jean .
JOURNAL OF FUNCTIONAL ANALYSIS, 2013, 265 (02) :153-184
[33]  
Pekar S., 1954, UNTERSUCHUNG BER ELE, DOI [10.1515/9783112649305, DOI 10.1515/9783112649305]
[34]   *LINTEGRALE DE RIEMANN-LIOUVILLE ET LE PROBLEME DE CAUCHY [J].
RIESZ, M .
ACTA MATHEMATICA, 1949, 81 (01) :1-218
[35]  
SERRIN J, 1971, ARCH RATION MECH AN, V43, P304
[36]  
STRUWE M, 1984, MATH Z, V187, P511, DOI 10.1007/BF01174186
[37]   Classification of solutions of higher order conformally invariant equations [J].
Wei, JC ;
Xu, XW .
MATHEMATISCHE ANNALEN, 1999, 313 (02) :207-228
[38]   Strongly interacting bumps for the Schrodinger-Newton equations [J].
Wei, Juncheng ;
Winter, Matthias .
JOURNAL OF MATHEMATICAL PHYSICS, 2009, 50 (01)
[39]   Energy bounds for entire nodal solutions of autonomous superlinear equations [J].
Weth, Tobias .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2006, 27 (04) :421-437
[40]  
Willem M., 1996, Minimax theorems