Existence and uniqueness of solutions for Choquard equation involving Hardy-Littlewood-Sobolev critical exponent

被引:58
作者
Guo, Lun [1 ,2 ]
Hu, Tingxi [3 ]
Peng, Shuangjie [1 ,2 ]
Shuai, Wei [1 ,2 ,4 ]
机构
[1] Cent China Normal Univ, Sch Math & Stat, Wuhan 430079, Hubei, Peoples R China
[2] Cent China Normal Univ, Hubei Key Lab Math Sci, Wuhan 430079, Hubei, Peoples R China
[3] Southwest Univ, Sch Math & Stat, Chongqing 400715, Peoples R China
[4] Chinese Univ Hong Kong, Inst Math Sci, Shatin, Hong Kong, Peoples R China
基金
中国博士后科学基金;
关键词
ASYMPTOTIC SYMMETRY; NODAL SOLUTIONS; CLASSIFICATION; THEOREMS;
D O I
10.1007/s00526-019-1585-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we first prove that each positive solution of is radially symmetric, monotone decreasing about some point and has the form where 0 < a < N if N = 3 or 4, and N - 4 = a < N if N = 5, 2 * a := N+ a N- 2 is the upper Hardy- Littlewood- Sobolev critical exponent, t > 0 is a constant and ca > 0 depends only on a and N. Based on this uniqueness result, we then study the following nonlinear Choquard equation By using Lions' Concentration- Compactness Principle, we obtain a global compactness result, i. e. wegive a complete description for the Palais- Smale sequences of the corresponding energy functional. Adopting this description, we are succeed in proving the existence of at least one positive solution if V( x) L N2 is suitable small. This result generalizes the result for semilinear Schrodinger equation by Benci and Cerami ( J Funct Anal 88: 90- 117, 1990) to Choquard equation.
引用
收藏
页数:34
相关论文
共 40 条
[11]   Classification of solutions for a system of integral equations [J].
Chen, WX ;
Li, CM ;
Ou, B .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2005, 30 (1-3) :59-65
[12]   A priori estimates for prescribing scalar curvature equations [J].
Chen, WX ;
Li, CM .
ANNALS OF MATHEMATICS, 1997, 145 (03) :547-564
[13]   The Brezis-Nirenberg type critical problem for the nonlinear Choquard equation [J].
Gao, Fashun ;
Yang, Minbo .
SCIENCE CHINA-MATHEMATICS, 2018, 61 (07) :1219-1242
[14]   Nodal solutions for the Choquard equation [J].
Ghimenti, Marco ;
Van Schaftingen, Jean .
JOURNAL OF FUNCTIONAL ANALYSIS, 2016, 271 (01) :107-135
[15]  
Gidas B., 1981, Mathematical Analysis and Applications Part A. Adv. Math. Suppl. Stud., V7, P369
[16]  
Gilbarg G, 2001, Classics in mathematics
[17]   UNIQUENESS OF GROUND STATES FOR PSEUDORELATIVISTIC HARTREE EQUATIONS [J].
Lenzmann, Enno .
ANALYSIS & PDE, 2009, 2 (01) :1-27
[18]  
Li CM, 1996, INVENT MATH, V123, P221, DOI 10.1007/BF01232373
[19]  
Li Y, 2004, CHIN J CT MRI, V2, P153
[20]   Uniqueness theorems through the method of moving spheres [J].
Li, YY ;
Zhu, MJ .
DUKE MATHEMATICAL JOURNAL, 1995, 80 (02) :383-417