Characterizing solute hydrogen and hydrides in pure and alloyed titanium at the atomic scale

被引:95
作者
Chang, Yanhong [1 ]
Breen, Andrew J. [1 ]
Tarzimoghadam, Zahra [1 ]
Kuernsteiner, Philipp [1 ]
Gardner, Hazel [2 ]
Ackerman, Abigail [3 ]
Radecka, Anna [4 ]
Bagot, Paul A. J. [2 ]
Lu, Wenjun [1 ]
Li, Tong [1 ,5 ,6 ]
Jaegle, Eric A. [1 ]
Herbig, Michael [1 ]
Stephenson, Leigh T. [1 ]
Moody, Michael P. [2 ]
Rugg, David [4 ]
Dye, David [3 ]
Ponge, Dirk [1 ]
Raabe, Dierk [1 ]
Gault, Baptiste [1 ]
机构
[1] Max Planck Inst Eisenforsch GmbH, Max Planck Str 1, D-40237 Dusseldorf, Germany
[2] Univ Oxford, Dept Mat, Parks Rd, Oxford OX1 3PH, England
[3] Imperial Coll, Royal Sch Mines, Dept Mat, Prince Consort Rd, London SW7 2BP, England
[4] Rolls Royce PLC, POB 31, Derby, England
[5] Ruhr Univ Bochum, Fak Maschinenbau, Inst Werkstoffe, Bochum, Germany
[6] Ruhr Univ Bochum, ZGH, Bochum, Germany
基金
英国工程与自然科学研究理事会;
关键词
Ti-alloys; Hydrogen; Stable hydrides; Atom probe tomography; FIELD-EVAPORATED IONS; ALPHA-BETA TITANIUM; PROBE TOMOGRAPHY; ELECTRON-MICROSCOPY; POST-IONIZATION; EMBRITTLEMENT; FRACTURE; PRECIPITATION; MARTENSITE; MECHANISMS;
D O I
10.1016/j.actamat.2018.02.064
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Ti and its alloys have a high affinity for hydrogen and are typical hydride formers. Ti-hydride are brittle phases which probably cause premature failure of Ti-alloys. Here, we used atom probe tomography and electron microscopy to investigate the hydrogen distribution in a set of specimens of commercially pure Ti, model and commercial Ti-alloys. Although likely partly introduced during specimen preparation with the focused-ion beam, we show formation of Ti-hydrides along alpha grain boundaries and alpha/beta phase boundaries in commercial pure Ti and alpha+beta binary model alloys. No hydrides are observed in the alpha phase in alloys with Al addition or quenched-in Mo supersaturation. (C) 2018 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:273 / 280
页数:8
相关论文
共 43 条
[1]   INFLUENCE OF AN OXIDE LAYER ON THE HYDRIDE EMBRITTLEMENT IN ZIRCALOY-4 [J].
BAI, JB .
SCRIPTA METALLURGICA ET MATERIALIA, 1993, 29 (05) :617-622
[2]   Perspectives on Titanium Science and Technology [J].
Banerjee, Dipankar ;
Williams, J. C. .
ACTA MATERIALIA, 2013, 61 (03) :844-879
[3]  
Boyd J.D., 1970, SCI, P545
[4]   Hydrogen embrittlement of commercial purity titanium [J].
Briant, CL ;
Wang, ZF ;
Chollocoop, N .
CORROSION SCIENCE, 2002, 44 (08) :1875-1888
[5]  
Carpenter G.J.C., 1995, Journal of the Microscopy Society of America, V1, P175, DOI [10.1017/S1431927695111757, DOI 10.1017/S1431927695111757]
[6]   Hydrogen in Ti and Zr alloys: industrial perspective, failure modes and mechanistic understanding [J].
Chapman, T. P. ;
Dye, D. ;
Rugg, D. .
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2017, 375 (2098)
[7]   Direct observation of individual hydrogen atoms at trapping sites in a ferritic steel [J].
Chen, Y. -S. ;
Haley, D. ;
Gerstl, S. S. A. ;
London, A. J. ;
Sweeney, F. ;
Wepf, R. A. ;
Rainforth, W. M. ;
Bagot, P. A. J. ;
Moody, M. P. .
SCIENCE, 2017, 355 (6330) :1196-1199
[8]  
DAVIS R, 1979, J MATER SCI, V14, P712
[9]   In situ hydride formation in titanium during focused ion milling [J].
Ding, Rengen ;
Jones, Ian P. .
JOURNAL OF ELECTRON MICROSCOPY, 2011, 60 (01) :1-9
[10]   HYDROGEN AND FATIGUE BEHAVIOR IN A NEAR ALPHA-TITANIUM ALLOY [J].
EVANS, WJ ;
BACHE, MR .
SCRIPTA METALLURGICA ET MATERIALIA, 1995, 32 (07) :1019-1024