Grain boundary segregation and precipitation in an Al-Zn-Mg-Cu alloy

被引:3
作者
Zhao, Huan [1 ]
Gault, Baptiste [1 ,2 ]
De Geuser, Frederic [3 ]
Ponge, Dirk [1 ]
Raabe, Dierk [1 ]
机构
[1] Max Planck Inst Eisenforsch GmbH, Max Planck Str 1, D-40237 Dusseldorf, Germany
[2] Imperial Coll, Royal Sch Mines, Dept Mat, Exhibit Rd, London SW7 2AZ, England
[3] Univ Grenoble Alpes, SIMaP, Grenoble INP, CNRS, F-38000 Grenoble, France
来源
17TH INTERNATIONAL CONFERENCE ON ALUMINIUM ALLOYS 2020 (ICAA17) | 2020年 / 326卷
关键词
STRESS-CORROSION CRACKING; ALUMINUM-ALLOYS; FREE ZONES; S-PHASE; BEHAVIOR; EVOLUTION; REVERSION; AA7150;
D O I
10.1051/matecconf/202032601004
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
High strength Al-alloys are highly susceptible to intergranular embrittlement, which severely limits their lifetime. This article summarizes our recent work on the effect of solute segregation in the precipitation behavior at grain boundaries (GBs) compared to the grain interiors. Solute segregation could accelerate the precipitation behavior at GBs, which causes the formation of coarse precipitates and precipitate free zones along GBs. Furthermore, the interplay of solute segregation and the local structure at GBs has been considered. We show that the distinct segregation and precipitation behavior occurs within the same GB, which makes the GB excess of solutes at one facet significantly higher than the other facet. This paper enriches the current understanding on the role of chemistry and structure at GBs related to intergranular fracture and corrosion resistance in high strength Al-alloys.
引用
收藏
页数:6
相关论文
共 46 条
[1]  
[Anonymous], 2013, ALUMINUM ALLOYS STRU
[2]   GP-zones in Al-Zn-Mg alloys and their role in artificial aging [J].
Berg, LK ;
Gjonnes, J ;
Hansen, V ;
Li, XZ ;
Knutson-Wedel, M ;
Waterloo, G ;
Schryvers, D ;
Wallenberg, LR .
ACTA MATERIALIA, 2001, 49 (17) :3443-3451
[3]   Experimental and DFT characterization of η′ nano-phase and its interfaces in Al-Zn-Mg-Cu alloys [J].
Cao, Fuhua ;
Zheng, Jingxu ;
Jiang, Yong ;
Chen, Bin ;
Wang, Yiren ;
Hu, Tao .
ACTA MATERIALIA, 2019, 164 :207-219
[4]   Atomic pillar-based nanoprecipitates strengthen AlMgSi alloys [J].
Chen, JH ;
Costan, E ;
van Huis, MA ;
Xu, Q ;
Zandbergen, HW .
SCIENCE, 2006, 312 (5772) :416-419
[5]   Influence of quench and heating rates on the ageing response of an Al-Zn-Mg-(Zr) alloy [J].
Deschamps, A ;
Brechet, Y .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 1998, 251 (1-2) :200-207
[6]   Investigation of fine scale precipitates in Al-Zn-Mg alloys after various heat treatments [J].
Engdahl, T ;
Hansen, V ;
Warren, PJ ;
Stiller, K .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2002, 327 (01) :59-64
[7]   Effect of Interface Phase Transformations on Diffusion and Segregation in High-Angle Grain Boundaries [J].
Frolov, T. ;
Divinski, S. V. ;
Asta, M. ;
Mishin, Y. .
PHYSICAL REVIEW LETTERS, 2013, 110 (25)
[8]   AN ELECTRON MICROSCOPE INVESTIGATION OF MICROSTRUCTURE IN AN ALUMINUM-ZINC-MAGNESIUM ALLOY [J].
GJONNES, J ;
SIMENSEN, CJ .
ACTA METALLURGICA, 1970, 18 (08) :881-&
[9]   Precipitation sequences during quenching of the AA 7010 alloy [J].
Godard, D ;
Archambault, P ;
Aeby-Gautier, E ;
Lapasset, G .
ACTA MATERIALIA, 2002, 50 (09) :2319-2329
[10]   Structure of age-hardened aluminium-copper alloys [J].
Guinier, A .
NATURE, 1938, 142 :569-570