Materials discovery: Informatic strategies for optical materials

被引:0
|
作者
Ferris, Kim F. [1 ]
Webb-Robertson, Bobbie-Jo M. [1 ]
Jones, Dumont M. [2 ]
机构
[1] Pacific Northwest Natl Lab, Computat & Informat Sci Directorate, Richland, WA 99352 USA
[2] LLC, Proximate Technol, Columbus, OH 43209 USA
关键词
materials selection; crystal structure; materials informatics; optical properties;
D O I
10.1117/12.719514
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Information-based materials discovery offers a structured method to evolve materials signatures based upon their physical properties, and to direct searches using performance-based criteria. In this current paper, we focus on the crystal structure aspects of an optical material and construct an information-based model to determine the proclivity of a particular AB composition to exhibit multiple crystal system behavior. Exploratory data methods used both supervised (support-vector machines) and unsupervised (disorder-reduction and pnincipal-component) classification methods for structural signature development; revealing complementary valid signatures. Examination of the relative contributions of the materials chemistry descriptors within these signatures indicates a strong role for Mendeleev number chemistry which must be balanced against the cationic/anionic radius ratio and electronegativity differences of constituents within the unit cell.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Informatic strategies for the discovery of polyketides and nonribosomal peptides
    Johnston, Chad
    Ibrahim, Ashraf
    Magarvey, Nathan
    MEDCHEMCOMM, 2012, 3 (08) : 932 - 937
  • [2] Discovery of new nonlinear optical materials
    Ok, Kang Min
    Pan, Shilie
    Yao, Jiyong
    Aitken, Jennifer A.
    JOURNAL OF ALLOYS AND COMPOUNDS, 2022, 923
  • [3] Accelerating discovery of tunable optical materials (ATOM)
    Veeder, Tricia
    Dehzangi, Arash
    Ramanathan, Shriram
    Kats, Mikhail
    Yu, Nanfang
    Hu, Juejun
    Roberts, Christopher
    Polking, Mark
    Tibbetts, Kevin
    Majumdar, Arka
    Leite, Marina S.
    Homayoun, Houman
    Munday, Jeremy N.
    Son, K. Kay
    IMAGE SENSING TECHNOLOGIES:MATERIALS, DEVICES, SYSTEMS, AND APPLICATIONS XI, 2024, 13030
  • [4] AI-based optical materials discovery
    Ghasemi, Amir
    Fang, Rui
    Zeze, DAgou A.
    Keshavarz-Hedayati, Mehdi
    MACHINE LEARNING IN PHOTONICS, 2024, 13017
  • [5] Benchmarking active learning strategies for materials optimization and discovery
    Wang, Alex
    Liang, Haotong
    McDannald, Austin
    Takeuchi, Ichiro
    Kusne, Aaron Gilad
    OXFORD OPEN MATERIALS SCIENCE, 2022, 2 (01):
  • [6] High-Throughput Strategies in the Discovery of Thermoelectric Materials
    Deng, Tingting
    Qiu, Pengfei
    Yin, Tingwei
    Li, Ze
    Yang, Jiong
    Wei, Tianran
    Shi, Xun
    ADVANCED MATERIALS, 2024, 36 (13)
  • [7] Emerging Optical Materials in Sensing and Discovery of Bioactive Compounds
    Vaz, Raquel
    Valpradinhos, Beatriz
    Frasco, Manuela F.
    Sales, Maria Goreti F.
    SENSORS, 2021, 21 (17)
  • [8] Materials discovery
    Chem Eng News, 10 (51):
  • [9] Efficient knowledge discovery of optoelectronic materials using evolutionary strategies
    Hughes, Thomas
    Cao, Yixiang
    Gavartin, Jacob
    Giesen, David
    Goldberg, Alexander
    Halls, Mathew
    Kwak, Shaun
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2015, 249
  • [10] Combinatorial materials sciences: Experimental strategies for accelerated knowledge discovery
    Rajan, Krishna
    ANNUAL REVIEW OF MATERIALS RESEARCH, 2008, 38 : 299 - 322