On some parabolic equations involving superlinear singular gradient terms

被引:7
作者
Magliocca, Martina [1 ]
Oliva, Francescantonio [2 ]
机构
[1] ENS Paris Saclay, Ctr Borelli, 4 Ave Sci, F-91190 Gif Sur Yvette, France
[2] Univ Napoli Federico II, Dipartimento Matemat & Applicaz, Via Cintia, I-80126 Naples, Italy
关键词
Nonlinear parabolic equations; Singular parabolic equations; Repulsive Gradient; ELLIPTIC-EQUATIONS; EXISTENCE; UNIQUENESS;
D O I
10.1007/s00028-021-00695-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we prove existence of nonnegative solutions to parabolic Cauchy-Dirichlet problems with (eventually) singular superlinear gradient terms. The model equation is u(t)-Delta(p)u=g(u)vertical bar del u vertical bar(q) + h(u)f(t,x) in (0,T) x Omega, Where Omega is an open bounded subset of R-N with N > 2, 0 < T < +infinity, 1 < p < N, and q < p is superlinear. The functions g, h are continuous and possibly satisfying g(0) = +infinity and/or h(0) = +infinity, with different rates. Finally, f is nonnegative and it belongs to a suitable Lebesgue space. We investigate the relation among the superlinear threshold of q, the regularity of the initial datum and the forcing term, and the decay rates of g, h at infinity.
引用
收藏
页码:2547 / 2590
页数:44
相关论文
共 33 条
[1]   Degenerate parabolic equations with initial data measures [J].
Andreucci, D .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1997, 349 (10) :3911-3923
[2]  
[Anonymous], 2001, Adv. Differential Equations
[3]   Some elliptic problems with singular natural growth lower order terms [J].
Arcoya, David ;
Boccardo, Lucio ;
Leonori, Tommaso ;
Porretta, Alessio .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2010, 249 (11) :2771-2795
[4]   The local theory for viscous Hamilton-Jacobi equations in Lebesgue spaces [J].
Ben-Artzi, M ;
Souplet, P ;
Weissler, FB .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2002, 81 (04) :343-378
[5]   EXISTENCE RESULTS FOR SOME QUASILINEAR PARABOLIC EQUATIONS [J].
BOCCARDO, L .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1989, 13 (04) :373-392
[6]   Semilinear elliptic equations with singular nonlinearities [J].
Boccardo, Lucio ;
Orsina, Luigi .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2010, 37 (3-4) :363-380
[7]   A nonlinear heat equation with singular initial data [J].
Brezis, H ;
Cazenave, T .
JOURNAL D ANALYSE MATHEMATIQUE, 1996, 68 :277-304
[8]   Existence and uniqueness for p-Laplace equations involving singular nonlinearities [J].
Canino, Annamaria ;
Sciunzi, Berardino ;
Trombetta, Alessandro .
NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2016, 23 (02)
[9]  
Dall'Aglio A, 2007, DIFFER INTEGRAL EQU, V20, P361
[10]  
Dall'aglio A, 2005, BOLL UNIONE MAT ITAL, V8B, P653