A finite-volume scheme for a spinorial matrix drift-diffusion model for semiconductors

被引:3
作者
Chainais-Hillairet, Claire [1 ]
Juengel, Ansgar [2 ]
Shpartko, Polina [2 ]
机构
[1] Univ Lille 1 Sci & Technol, Lab Paul Painleve, Cite Sci, F-59655 Villeneuve Dascq, France
[2] Vienna Univ Technol, Inst Anal & Sci Comp, Wiedner Hauptstr 8-10, A-1040 Vienna, Austria
基金
奥地利科学基金会;
关键词
energy dissipation; field-effect transistor; finite volumes; semiconductors; spinor drift-diffusion equations; SPIN-POLARIZED TRANSPORT; ASYMPTOTIC-BEHAVIOR; SPINTRONICS; SYSTEMS; ENERGY; LIMIT; FIELD;
D O I
10.1002/num.22030
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
An implicit Euler finite-volume scheme for a spinorial matrix drift-diffusion model for semiconductors is analyzed. The model consists of strongly coupled parabolic equations for the electron density matrix or, alternatively, of weakly coupled equations for the charge and spin-vector densities, coupled to the Poisson equation for the electric potential. The equations are solved in a bounded domain with mixed Dirichlet-Neumann boundary conditions. The charge and spin-vector fluxes are approximated by a Scharfetter-Gummel discretization. The main features of the numerical scheme are the preservation of nonnegativity and L infinity bounds of the densities and the dissipation of the discrete free energy. The existence of a bounded discrete solution and the monotonicity of the discrete free energy are proved. For undoped semiconductor materials, the numerical scheme is unconditionally stable. The fundamental ideas are reformulations using spin-up and spin-down densities and certain projections of the spin-vector density, free energy estimates, and a discrete Moser iteration. Furthermore, numerical simulations of a simple ferromagnetic-layer field-effect transistor in two space dimensions are presented. (c) 2015 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 32: 819-846, 2016
引用
收藏
页码:819 / 846
页数:28
相关论文
共 24 条
[1]   A three-dimensional spin-diffusion model for micromagnetics [J].
Abert, Claas ;
Ruggeri, Michele ;
Bruckner, Florian ;
Vogler, Christoph ;
Hrkac, Gino ;
Praetorius, Dirk ;
Suess, Dieter .
SCIENTIFIC REPORTS, 2015, 5
[2]   Spin-polarized transport in ferromagnetic multilayers: An unconditionally convergent FEM integrator [J].
Abert, Claas ;
Hrkac, Gino ;
Page, Marcus ;
Praetorius, Dirk ;
Ruggeri, Michele ;
Suess, Dieter .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2014, 68 (06) :639-654
[3]  
[Anonymous], 2008, ADV MATH SCI APPL
[4]   Quantum drift-diffusion modeling of spin transport in nanostructures [J].
Barletti, Luigi ;
Mehats, Florian .
JOURNAL OF MATHEMATICAL PHYSICS, 2010, 51 (05)
[5]   STUDY OF A FINITE VOLUME SCHEME FOR THE DRIFT-DIFFUSION SYSTEM. ASYMPTOTIC BEHAVIOR IN THE QUASI-NEUTRAL LIMIT [J].
Bessemoulin-Chatard, M. ;
Chainais-Hillairet, C. ;
Vignal, M. -H. .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2014, 52 (04) :1666-1691
[6]   Asymptotic Behavior of the Scharfetter-Gummel Scheme for the Drift-Diffusion Model [J].
Chatard, Marianne .
FINITE VOLUMES FOR COMPLEX APPLICATIONS VI: PROBLEMS & PERSPECTIVES, VOLS 1 AND 2, 2011, 4 :235-243
[7]  
ElsHajj R., 2014, COMMUN MATH SCI, V12, P565
[8]  
Eymard R, 2000, HDBK NUM AN, V7, P713
[9]  
Fabian J, 2007, ACTA PHYS SLOVACA, V57, P565, DOI 10.2478/v10155-010-0086-8
[10]   On the discretization of vanRoosbroeck's equations with magnetic field [J].
Gajewski, H ;
Gartner, K .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 1996, 76 (05) :247-264