A triazine-based covalent organic porous polymer (COP) was synthesized from the monomers 1,3,5-triphenylbenzene and tricyanogen chloride via the Friedel-Crafts reaction and characterized in detail using Brunauer-Emmett-Teller analysis, X-ray photoelectron spectroscopy, elemental analysis, and scanning electron microscopy, which confirmed that the COP had a rough surface and suitable extraction site. It was then employed in in-tube solid-phase microextraction combined with a high-performance liquid chromatography-diode array detector. The COP adsorbent was evaluated with different types of analyte, including estrogens, polycyclic aromatic hydrocarbons (PAHs), and plasticizers. The COP produced its best performance with PAHs. In order to obtain the highest extraction efficiency for PAHs, the main influential factors were optimized. Furthermore, a sensitive analytical method was established with the limits of detection of 0.004-0.010 mu g L-1, high enrichment factor of 1110-2763, and wide linear ranges (0.013-20.0 mu g L-1, 0.016-20.0 mu g L-1 and 0.033-20.0 mu g L-1). The relative standard deviation in intra-day and interday tests was also controlled to be within 0.3-3.1%. The proposed method was employed in the online detection of trace PAHs in real water samples, with satisfactory results obtained. (C) 2021 Elsevier B.V. All rights reserved.