Predicting Spatio-temporal Time Series Using Dimension Reduced Local States

被引:13
作者
Isensee, Jonas [1 ,2 ]
Datseris, George [1 ,2 ]
Parlitz, Ulrich [1 ,2 ]
机构
[1] Max Planck Inst Dynam & Self Org, Fassberg 17, D-37077 Gottingen, Germany
[2] Georg August Univ Gottingen, Inst Dynam Komplexer Syst, Friedrich Hund Pl 1, D-37077 Gottingen, Germany
关键词
Data driven modelling; Nearest neighbours prediction; Spatio-temporal chaos; DYNAMICS; MODEL;
D O I
10.1007/s00332-019-09588-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We present a method for both cross-estimation and iterated time series prediction of spatio-temporal dynamics based on local modelling and dimension reduction techniques. Assuming homogeneity of the underlying dynamics, we construct delay coordinates of local states and then further reduce their dimensionality through Principle Component Analysis. The prediction uses nearest neighbour methods in the space of dimension reduced states to either cross-estimate or iteratively predict the future of a given frame. The effectiveness of this approach is shown for (noisy) data from a (cubic) Barkley model, the Bueno-Orovio-Cherry-Fenton model, and the Kuramoto-Sivashinsky model.
引用
收藏
页码:713 / 735
页数:23
相关论文
共 37 条
  • [21] KURAMOTO Y, 1978, SUP PROG THEOR PHYS, P346, DOI 10.1143/PTPS.64.346
  • [22] Features of Chaotic Transients in Excitable Media Governed by Spiral and Scroll Waves
    Lilienkamp, Thomas
    Christoph, Jan
    Parlitz, Ulrich
    [J]. PHYSICAL REVIEW LETTERS, 2017, 119 (05)
  • [23] Reservoir observers: Model-free inference of unmeasured variables in chaotic systems
    Lu, Zhixin
    Pathak, Jaideep
    Hunt, Brian
    Girvan, Michelle
    Brockett, Roger
    Ott, Edward
    [J]. CHAOS, 2017, 27 (04)
  • [24] Nonparametric statistical modeling of spatiotemporal dynamics based on recorded data
    Mandelj, S
    Grabec, I
    Govekar, E
    [J]. INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2004, 14 (06): : 2011 - 2025
  • [25] Statistical approach to modeling of spatiotemporal dynamics
    Mandelj, S
    Grabec, I
    Govekar, E
    [J]. INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2001, 11 (11): : 2731 - 2738
  • [26] Winning entry of the K. U. Leuven time-series prediction competition
    McNames, J
    Suykens, JAK
    Vandewalle, J
    [J]. INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 1999, 9 (08): : 1485 - 1500
  • [27] GEOMETRY FROM A TIME-SERIES
    PACKARD, NH
    CRUTCHFIELD, JP
    FARMER, JD
    SHAW, RS
    [J]. PHYSICAL REVIEW LETTERS, 1980, 45 (09) : 712 - 716
  • [28] Prediction of spatiotemporal time series based on reconstructed local states
    Parlitz, U
    Merkwirth, C
    [J]. PHYSICAL REVIEW LETTERS, 2000, 84 (09) : 1890 - 1893
  • [29] Model-Free Prediction of Large Spatiotemporally Chaotic Systems from Data: A Reservoir Computing Approach
    Pathak, Jaideep
    Hunt, Brian
    Girvan, Michelle
    Lu, Zhixin
    Ott, Edward
    [J]. PHYSICAL REVIEW LETTERS, 2018, 120 (02)
  • [30] Rackauckas C., 2017, Journal of Open Research Software, V5, P15, DOI 10.5334/jors.151