Machine-learning free-energy functionals using density profiles from simulations

被引:29
作者
Cats, Peter [1 ]
Kuipers, Sander [1 ]
de Wind, Sacha [1 ]
van Damme, Robin [2 ]
Coli, Gabriele M. [2 ]
Dijkstra, Marjolein [2 ]
van Roij, Rene [1 ]
机构
[1] Univ Utrecht, Inst Theoret Phys, Princetonpl 5, NL-3584 CC Utrecht, Netherlands
[2] Debye Inst Nanomat Sci, Soft Condensed Matter, Princetonpl 1, NL-3584 CC Utrecht, Netherlands
关键词
FUNDAMENTAL MEASURE-THEORY; HARD-SPHERE MIXTURES; EQUATION-OF-STATE; FLUIDS; MODEL;
D O I
10.1063/5.0042558
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
The formally exact framework of equilibrium Density Functional Theory (DFT) is capable of simultaneously and consistently describing thermodynamic and structural properties of interacting many-body systems in arbitrary external potentials. In practice, however, DFT hinges on approximate (free-)energy functionals from which density profiles (and hence the thermodynamic potential) follow via an Euler-Lagrange equation. Here, we explore a relatively simple Machine-Learning (ML) approach to improve the standard mean-field approximation of the excess Helmholtz free-energy functional of a 3D Lennard-Jones system at a supercritical temperature. The learning set consists of density profiles from grand-canonical Monte Carlo simulations of this system at varying chemical potentials and external potentials in a planar geometry only. Using the DFT formalism, we nevertheless can extract not only very accurate 3D bulk equations of state but also radial distribution functions using the Percus test-particle method. Unfortunately, our ML approach did not provide very reliable Ornstein-Zernike direct correlation functions for small distances.
引用
收藏
页数:11
相关论文
共 27 条
[1]   Model colloidal fluid with competing interactions: Bulk and interfacial properties [J].
Archer, A. J. ;
Pini, D. ;
Evans, R. ;
Reatto, L. .
JOURNAL OF CHEMICAL PHYSICS, 2007, 126 (01)
[2]   The standard mean-field treatment of inter-particle attraction in classical DFT is better than one might expect [J].
Archer, Andrew J. ;
Chacko, Blesson ;
Evans, Robert .
JOURNAL OF CHEMICAL PHYSICS, 2017, 147 (03)
[3]   PERTURBATION THEORY AND EQUATION OF STATE FOR FLUIDS .2. A SUCCESSFUL THEORY OF LIQUIDS [J].
BARKER, JA ;
HENDERSO.D .
JOURNAL OF CHEMICAL PHYSICS, 1967, 47 (11) :4714-&
[4]   MOLECULAR THERMODYNAMICS FOR FLUIDS AT LOW AND HIGH-DENSITIES .1. PURE FLUIDS CONTAINING SMALL OR LARGE MOLECULES [J].
COTTERMAN, RL ;
SCHWARZ, BJ ;
PRAUSNITZ, JM .
AICHE JOURNAL, 1986, 32 (11) :1787-1798
[5]  
de Wind S., 2019, THESIS U UTRECHT
[6]   NATURE OF THE LIQUID-VAPOR INTERFACE AND OTHER TOPICS IN THE STATISTICAL-MECHANICS OF NONUNIFORM, CLASSICAL FLUIDS [J].
EVANS, R .
ADVANCES IN PHYSICS, 1979, 28 (02) :143-200
[7]  
Evans R., 1992, FUNDAMENTALS INHOMOG
[8]   Tension and Stiffness of the Hard Sphere Crystal-Fluid Interface [J].
Haertel, A. ;
Oettel, M. ;
Rozas, R. E. ;
Egelhaaf, S. U. ;
Horbach, J. ;
Loewen, H. .
PHYSICAL REVIEW LETTERS, 2012, 108 (21)
[9]  
Hansen J. P, 1976, MOL LIQUIDS, DOI DOI 10.1016/B978-0-12-387032-2.00011-8
[10]   Density functional theory for hard-sphere mixtures: the White Bear version mark II [J].
Hansen-Goos, Hendrik ;
Roth, Roland .
JOURNAL OF PHYSICS-CONDENSED MATTER, 2006, 18 (37) :8413-8425