On the limitations in assessing stability of oxygen evolution catalysts using aqueous model electrochemical cells

被引:158
作者
Knoeppel, Julius [1 ,2 ]
Moeckl, Maximilian [3 ]
Escalera-Lopez, Daniel [1 ]
Stojanovski, Kevin [1 ,2 ]
Bierling, Markus [1 ,2 ]
Boehm, Thomas [1 ,2 ]
Thiele, Simon [1 ,2 ]
Rzepka, Matthias [3 ]
Cherevko, Serhiy [1 ]
机构
[1] Forschungszentrum Julich, Helmholtz Inst Erlangen Nurnberg Renewable Energy, Erlangen, Germany
[2] Friedrich Alexander Univ Erlangen Nurnberg, Dept Chem & Biol Engn, Erlangen, Germany
[3] ZAE Bayern, Electrochem Energy Storage, Garching, Germany
关键词
SURFACE-AREA ELECTROCATALYSTS; WATER ELECTROLYSIS; REDUCTION ACTIVITIES; FUEL-CELLS; IRIDIUM; HYDROGEN; PERFORMANCE; DISSOLUTION; DURABILITY; CHALLENGE;
D O I
10.1038/s41467-021-22296-9
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Recent research indicates a severe discrepancy between oxygen evolution reaction catalysts dissolution in aqueous model systems and membrane electrode assemblies. This questions the relevance of the widespread aqueous testing for real world application. In this study, we aim to determine the processes responsible for the dissolution discrepancy. Experimental parameters known to diverge in both systems are individually tested for their influence on dissolution of an Ir-based catalyst. Ir dissolution is studied in an aqueous model system, a scanning flow cell coupled to an inductively coupled plasma mass spectrometer. Real dissolution rates of the Ir OER catalyst in membrane electrode assemblies are measured with a specifically developed, dedicated setup. Overestimated acidity in the anode catalyst layer and stabilization over time in real devices are proposed as main contributors to the dissolution discrepancy. The results shown here lead to clear guidelines for anode electrocatalyst testing parameters to resemble realistic electrolyzer operating conditions. Dissolution of Ir catalysts varies widely between PEM water electrolysers and aqueous electrolytes. Here, we systematically investigate this finding and propose that stabilization of the catalysts over time and overestimated ionomer acidity are the main contributors to the dissolution discrepancy.
引用
收藏
页数:9
相关论文
共 58 条
[1]   A Roadmap to Low-Cost Hydrogen with Hydroxide Exchange Membrane Electrolyzers [J].
Abbasi, Reza ;
Setzler, Brion P. ;
Lin, Saisai ;
Wang, Junhuo ;
Zhao, Yun ;
Xu, Hui ;
Pivovar, Bryan ;
Tian, Boyuan ;
Chen, Xi ;
Wu, Gang ;
Yan, Yushan .
ADVANCED MATERIALS, 2019, 31 (31)
[2]   Iridium Oxygen Evolution Activity and Durability Baselines in Rotating Disk Electrode Half-Cells [J].
Alia, Shaun M. ;
Anderson, Grace C. .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2019, 166 (04) :F282-F294
[3]   Activity and Durability of Iridium Nanoparticles in the Oxygen Evolution Reaction [J].
Alia, Shaun M. ;
Rasimick, Brian ;
Ngo, Chilan ;
Neyerlin, K. C. ;
Kocha, Shyam S. ;
Pylypenko, Svitlana ;
Xu, Hui ;
Pivovar, Bryan S. .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2016, 163 (11) :F3105-F3112
[4]  
[Anonymous], 2020, Kopernikus & P2X Project funded by the German Ministry of Education and Research (BMBF)
[5]   Pathways to electrochemical solar-hydrogen technologies [J].
Ardo, Shane ;
Rivas, David Fernandez ;
Modestino, Miguel A. ;
Greiving, Verena Schulze ;
Abdi, Fatwa F. ;
Alarcon Llado, Esther ;
Artero, Vincent ;
Ayers, Katherine ;
Battaglia, Corsin ;
Becker, Jan-Philipp ;
Bederak, Dmytro ;
Berger, Alan ;
Buda, Francesco ;
Chinello, Enrico ;
Dam, Bernard ;
Di Palma, Valerio ;
Edvinsson, Tomas ;
Fujii, Katsushi ;
Gardeniers, Han ;
Geerlings, Hans ;
Hashemi, S. Mohammad H. ;
Haussener, Sophia ;
Houle, Frances ;
Huskens, Jurriaan ;
James, Brian D. ;
Konrad, Kornelia ;
Kudo, Akihiko ;
Kunturu, Pramod Patil ;
Lohse, Detlef ;
Mei, Bastian ;
Miller, Eric L. ;
Moore, Gary F. ;
Muller, Jiri ;
Orchard, Katherine L. ;
Rosser, Timothy E. ;
Saadi, Fadl H. ;
Schuttauf, Jan-Willem ;
Seger, Brian ;
Sheehan, Stafford W. ;
Smith, Wilson A. ;
Spurgeon, Joshua ;
Tang, Maureen H. ;
van de Krol, Roel ;
Vesborg, Peter C. K. ;
Westerik, Pieter .
ENERGY & ENVIRONMENTAL SCIENCE, 2018, 11 (10) :2768-2783
[6]   Electrolyte Effects on the Electrocatalytic Performance of Iridium-Based Nanoparticles for Oxygen Evolution in Rotating Disc Electrodes [J].
Arminio-Ravelo, Jose Alejandro ;
Jensen, Anders W. ;
Jensen, Kim D. ;
Quinson, Jonathan ;
Escudero-Escribano, Maria .
CHEMPHYSCHEM, 2019, 20 (22) :2956-2963
[7]   Efficient Generation of High Energy Density Fuel from Water [J].
Ayers, K. E. ;
Dalton, L. T. ;
Anderson, E. B. .
ELECTROCHEMICAL SYNTHESIS OF FUELS 1, 2012, 41 (33) :27-38
[8]   Pathways to ultra-low platinum group metal catalyst loading in proton exchange membrane electrolyzers [J].
Ayers, Katherine E. ;
Renner, Julie N. ;
Danilovic, Nemanja ;
Wang, Jia X. ;
Zhang, Yu ;
Maric, Radenka ;
Yu, Haoran .
CATALYSIS TODAY, 2016, 262 :121-132
[9]   Understanding the effects of material properties and operating conditions on component aging in polymer electrolyte water electrolyzers [J].
Babic, Ugljesa ;
Tarik, Mohamed ;
Schmidt, Thomas Justus ;
Gubler, Lorenz .
JOURNAL OF POWER SOURCES, 2020, 451
[10]   Life cycle assessment of hydrogen from proton exchange membrane water electrolysis in future energy systems [J].
Bareiss, Kay ;
de la Rua, Cristina ;
Moeckl, Maximilian ;
Hamacher, Thomas .
APPLIED ENERGY, 2019, 237 :862-872